
INTOGRATE AX – Developer
Lotus Notes Integration kit

Version 2.2

1

0. Introduction ... 5

0.1 AX to Lotus Notes integration kit .. 5
0.2 Target group ... 5
0.3 Components ... 6

0.3.1 Windows program library ERP2LN.DLL 6
0.3.2 AX class ”ax2ln” .. 6

0.4 Training ... 7
1. Program installation .. 8

1.1 Before you begin ... 8
1.1.1 System requirements ... 8
1.1.2 Check list ... 8
1.1.3 Installation and Set-up of the Lotus Notes client 8

1.2 Files ... 8
1.3 Installing the Integration Kit .. 9
1.4 Serial number.. 9
1.5 Installation of AX elements ... 9

2. Quick start ... 10
2.1 Case: Update CustTable ... 10

2.1.1 Creating the Customer Database in Lotus Notes 10
2.1.2 AX code ... 11
2.1.3 Initialization .. 11
2.1.4 WHILE SELECT LOOP ... 12
2.1.5 Update or Create? .. 12
2.1.6 Specification of Document Contents 12

3. Using the Integration Kit ... 13
3.1 Call of the AX methods.. 13
3.2 Connecting to Lotus Notes ... 13

3.2.1 Initialization of Link to DLL File 13
3.2.2 Creation of Session to Lotus Notes 13

3.2.2.1 Selecting Notes server ... 14
3.2.2.2 Selecting Notes database .. 14
3.2.2.3 Selection of Notes Application Elements 14

3.2.3 Closing the session... 15
3.2.4 Switching sessions ... 15

3.3 Current Values .. 15
3.3.1 Information on Current Session 15
3.3.2 Information on DLL Program Library 16
3.3.3 Managing temporary files ... 16

3.4 Query and lookup in Lotus Notes .. 17
3.4.1 General Query .. 17
3.4.2 Handling sets of results .. 17
3.4.3 Query on Unique Document .. 18
3.4.4 Query by view ... 18
3.4.5 Query on Field Value .. 18
3.4.6 Unique Query .. 19
3.4.7 Comparison of Values .. 20

3.5 Data Manipulation ... 20
3.5.1 Creation of a New Document ... 20
3.5.2 Allocation of Field Values ... 20
3.5.3 Deletion of Documents in Lotus Notes 21
3.5.4 Updates of changes ... 22
3.5.5 Information on Active Document 22

3.6 Rich-text .. 23
3.6.1 Update to Notes .. 23
3.6.2 Reading from Notes ... 23

3.6.2.1 Rich-text in Separate Files ... 23
3.6.2.2 Selection of Method .. 24

3.7 File Attachments ... 24

2

3.8 Mail .. 25
3.8.1 Preparing Mail ... 25
3.8.2 Filling in Mail Contents .. 25
3.8.3 Sending of mail ... 26
3.8.4 Mail through Lotus Notes client 26
3.8.5 MAPI Mail .. 27
3.8.6 Automatic Error Messages via Mail 27

3.9 Information about Notes design ... 27
3.9.1 Query on the Existence of Design Element Name 28
3.9.2 Listing Notes Design Elements 28
3.9.3 Type of Design Element ... 28

3.10 Debugging ... 30
3.10.1 Error messages .. 30
3.10.2 Debugging on the screen ... 30
3.10.3 Debugging to log file ... 30

4. Reference ... 32
Method name .. 32
AddQueryField .. 33
AppendFieldValue .. 34
AppendTextList ... 35
AttachFile .. 36
ClearLog .. 37
ClearQueryFields .. 38
Close ... 39
Commit .. 40
CommitNoRecalc ... 41
CommitWithForm ... 42
CompareField ... 43
CopyToDatabase ... 44
CreateLinkFile ... 45
CreateNew .. 46
DatabaseName .. 47
DatabaseReplicaId ... 48
DatabaseTitle .. 49
Debug .. 50
DeleteAttachAll ... 51
DeleteAttachment ... 52
DeleteCurrent ... 53
DeleteID .. 54
DeleteTmpFile .. 55
DetachFile ... 56
DLLVersion ... 57
DocID .. 58
ExistsAttach .. 59
ExistsDatabase ... 60
ExistsField ... 61
ExistsForm .. 62
ExistsView ... 63
FieldType .. 64
FirstAttach ... 65
FirstField.. 66
FirstForm ... 67
FirstView ... 68
Form .. 69
FormName .. 70
FormType.. 71
GetDialogDatabaseName .. 72
GetDialogServerName ... 73
GetDocInfo .. 74

 3

GetFieldLength ... 75
GetFieldValue ... 76
GetFoundDocs ... 77
GetHandle ... 78
GetItemInfo ... 79
GetLink .. 80
GetMessages ... 81
GetNotesText ... 82
GetRichSepMode ... 83
GetTmpFileName ... 84
GetUnique ... 85
ImportFile .. 86
Init .. 87
IsDemoVersion ... 88
Logon .. 89
LookupName .. 90
MailActiveDocument... 91
MailAttachFile ... 92
MailComposeOLE .. 93
MailCreateLinkFile .. 94
MailGetDB ... 95
MailGetHandle .. 96
MailGetLastUNID.. 97
MailGetLink ... 98
MailGetServer ... 99
MailGetUsername .. 100
MailPrepare ... 101
MailSend ... 102
MailSendDocument .. 103
MailSendFrom .. 104
MailSetBCC .. 105
MailSetBody .. 106
MailSetBodyFile .. 107
MailSetBodyText... 108
MailSetCC ... 109
MailSetCopyDB .. 110
MailSetCopyToUser ... 111
MailSetDB ... 112
MailSetDeliveryPriority .. 113
MailSetDeliveryReport .. 114
MailSetImportance ... 115
MailSetError .. 116
MailSetEncrypt .. 117
MailSetMAPI ... 118
MailSetMAPIPassword ... 119
MailSetMAPIProfile ... 120
MailSetReplyTo .. 121
MailSetReturnReceipt .. 122
MailSetSave .. 123
MailSetSendTo ... 124
MailSetServer ... 125
MailSetSubject .. 126
Messages.. 127
MoveFirst .. 128
MoveLast .. 129
MoveNext .. 130
MovePrev .. 131
NextAttach .. 132
NextField ... 133
NextForm .. 134

4

NextView ... 135
OpenDialog ... 136
OpenServer .. 137
PutFieldValue .. 138
Query ... 139
QueryField ... 140
QueryRichTextField .. 141
QueryUnique ... 142
QueryView... 143
RemoveItem ... 144
SearchFirst .. 145
SearchNext ... 146
SearchView ... 147
SelectID ... 148
SelectUNID ... 149
ServerName.. 150
SetComputeWithForm ... 151
SetDelay .. 152
SetDelim.. 153
SetFieldValue .. 154
SetHandle ... 155
SetKeepUnread .. 156
SetListDelim .. 157
SetLog ... 158
SetLogFilename ... 159
SetRichSepMode ... 160
SetTmpFileName ... 161
ShowAll ... 162
UIOpenDocument .. 163
UNID.. 164
View ... 165
ViewName .. 166

Appendix 1. Troubleshooting ... 167
Appendix 2. Known errors and limitations ... 168

2.1 Cleanup at errors .. 168
2.2 Multi-value fields at Query .. 168
2.3 Mail-error at errors in mail-integration 168
2.4 Attachments in rich-text fields .. 168
2.5 Limitations in graphics formats .. 168
2.6 DocId at replicas ... 169
2.7 Length of field values .. 169
2.8 The field ”Form” must be present on documents 169

Appendix 3. Type of design elements ... 170
Appendix 4. Data type parameters .. 171
Appendix 5. INTOGRATE in a Terminal/Citrix environment 172
Appendix 6. Adjustments to Microsoft Dynamics AX 173

New elements ... 173
Appendix 7. Manual installation of the Integration Kit 174

Unpacking files ... 174
Copying files .. 174
Setup of PATH .. 174

Check PATH configuration .. 174
Setup of PATH in Windows 9x .. 174
Setup of PATH in Windows NT/2000 175

Setup of the Windows registration database 175
Appendix 8. Troubleshooting ... 176

Checklist .. 176
Appendix 9. Configuration - ERP2LN.INI .. 177

Logging system... 177

5

0. Introduction

0.1 AX to Lotus Notes integration kit

INTOGRATE AX – Developer enables thight integration between Dynamics AX and Lotus Notes.

The technology applied in this Integration Kit is based on integration to Lotus Notes via a Windows
DLL program library. All administration and set-up are via AX.

The integration kit features

 Possibility for on-line integration
All updates in e.g. Lotus Notes can be coordinated with updates in AX. It is possible to cancel up-
dates, e.g. in the case of missing link.

 Strict observance of security routines in both systems
It is not possible to evade system security routines, neither in Lotus Notes, nor in AX.

 Embedding in standard AX code
Coding is done directly in the AX development environment via AX methods. This ensures that
AX rules of integrity are kept.

 Transparent access to Lotus Notes
Lotus Notes can be immediately accessed without the need for coding or changes in Lotus Notes
design-elements. This e.g. enables integration with Lotus Notes applications for which the user
has no access to source code but only knows the names of databases, forms and fields in Notes.

 Sending of e-mails from Dynamics AX
Possibility for integration with E-mail system, by which e.g. work-flow systems can be implement-
ed in AX.

 Direct access to Lotus Notes API
Because the Integration Kit has been developed especially for Lotus Notes, the kit can deliver
many Lotus Notes specific information and possibilities.

The integration kit is also available for the applications ATTAIN, CONCORDE XAL and CONCORDE
C5.

0.2 Target group

As the integration tool contains a collection of tools for integration with Lotus Notes via AX's develop-
ment environment, this manual is primarily intended for personnel with some knowledge of AX's pro-
gramming facilities.

However, the level of programming knowledge required much depends on the degree of integration
wanted between AX and Lotus Notes.

6

In order to use the integration kit, it is an advantage to have some knowledge of Lotus Notes, espe-
cially as regards the names of

 Databases

 Views

 Forms

 Fields

This information is required for in-house programming of integration solutions. However, skills in using
the tools capable of supplying this information from Lotus Notes can be acquired in very short time. It
is recommended that data transfer and manipulation in Lotus Notes be approved by the person(s)
responsible for the company's Lotus Notes application(s).

0.3 Components

The integration kit consists primarily of two main components: an AX Class called "ax2ln", and a Win-
dows program library called "ERP2LN.DLL".

0.3.1 Windows program library ERP2LN.DLL

As mentioned above, AX has limited facilities for direct communication with Lotus Notes. So the actual
integration is not carried out within AX. This happens via a Windows program library, a so-called DLL
file (Dynamic Link Library), which is one of the essential buildings blocks in Microsoft Windows. One
of the purposes of these files is to create a common reference for the various Windows applications.

ERP2LN.DLL is what is termed an "API" by programming specialists (Application Programming Inter-
face), i.e. program-based entry to a program.
With ERP2LN.DLL the AX programmer gets access to a number of Notes facilities which can be
utilized outside Lotus Notes.
In principle, ERP2LN.DLL functions as if the workstation were linked to Lotus Notes as an ordinary
user.

The integration kit is also available as a COM-component.

0.3.2 AX class ”ax2ln”

The principal idea behind the integration kit is that all integration between AX and Lotus Notes should
be carried out from inside AX.

The AX standard versions have very limited facilities for direct communication with Lotus Notes, it has
been necessary to extend the functionality of AX. All extensions are contained in the AX class ax2ln.
The primary purpose of this class is to offer an interface in the Notes integration that is as similar as
possible to the options offered by AX.

NOTE: The DLL library should always be accessed via the ax2ln class and NOT accessed

directly.

7

0.4 Training

A high level of training is not required in order to use the integration kit. A course will typically comprise
the following areas:

1. The principles applied in integration between AX and Lotus Notes.
2. Integration kit commands.
3. Relevant Lotus Notes tools.
4. Integration case by which an AX application element is integrated with a Lotus Notes database.

The duration of the course depends on the participants' basic knowledge of Lotus Notes and the AX
development environment, and on the level of detail by which the integration case is to be dealt with.

8

1. Program installation

1.1 Before you begin

1.1.1 System requirements

The following software is required:

 Microsoft Windows Workstation/Server 98, NT, 2000, XP, Vista, 7 or 8

 Lotus Notes client version 5.02c or later.
1

 AX version 2.0 or newer.

1.1.2 Check list

Before you begin the actual installation of the Integration Kit it is recommended that you carry out the
following points. They may prevent potential problems not related to the Integration Kit itself.

 Start your local Lotus Notes client. Check that you have access to the database you want to
integrate to.

 Start AX and make sure that you have a valid user name and password for AX. Remember to
exit AX before you continue with the installation.

 If you are using an AX client located on a common network drive, you must make sure that
you have sufficient rights to modify the bin directory (e.g. ”C:\Program Files (x86)\Microsoft

Dynamics AX\60\Client\Bin”). Several files will be copied to this directory during the installa-
tion.

1.1.3 Installation and Set-up of the Lotus Notes client

In order to use the integration kit, the Lotus Notes client must have been installed on the workstation.
Lotus Notes must be in a 32-bit version. For installation of the Lotus Notes client, follow the Lotus
Notes installation guide.

Installation of the Lotus Notes client creates the files, which will be used by the integration kit for crea-
tion of link to Lotus Notes.
It is not a requirement that the Lotus Notes client is running on the work station for AX to communi-
cate with Lotus Notes.

All integration with Lotus Notes is from Dynamics AX. No special modifications in Lotus Notes are
required for the integration kit to be used. The integration kit may be combined with ODBC access
from Lotus Notes to AX if wanted.

Also refer to the file readme.txt on the supplied media for new version specific information.

1.2 Files

The integration kit consists of the following files, which are automatically copied into the AX bin- direc-
tory of the workstation:

ERP2LN.DLL
ERP2LN_ADDON.DLL
ERP2LN.INI

 9

BORLNDMM.DLL

1.3 Installing the Integration Kit

Insert the CD-ROM with the title “INTOGRATE Axapta – Developer”. If the installation program does
not start automatically, double-click install.exe at the root of the CD-ROM (Select ’Run’ in the Win-
dows Start menu and type ”D:\setup.exe”, if your CD-ROM drive is the D-drive).
If the installation is not carried out from the CD-ROM, the files on CD-ROM must be copied to either a
local drive or a mapped network drive.

1.4 Serial number

The Integration Kit is supplied with a code letter which contains a serial number matching the license
name and serial number of AX.
This serial number is supplied in a file – erp2ln.lic, that must be placed in the same directory as
erp2ln.dll.

1.5 Installation of AX elements

The necessary AX files are placed in a sub-directory below the AXAPTA bin files -
”bin\Intoint\AXAPTA\x.x” (x.x is the version into which you are installing the Kit).

Start the AX client. In the menu ’Files’, select ’Open’ and then ’Project’. Then select the ’Import’ icon
from the project list.

Import the file I2I_LN.xpo.

10

2. Quick start

Before an in-depth description of the facilities is given, a small case will be presented in this section
which illustrates how the kit functions and can be used.
The case should primarily be regarded as an example of the principles in integration. The case is fully
operational, but for example error handling is not incorporated. See section 4 for a more detailed de-
scription of the error codes of the various methods.

2.1 Case: Update CustTable

In this case it will be illustrated how data can be created and updated in Lotus Notes from AX.
The purpose of the job is to maintain a copy of the customer table in Lotus Notes. By execution of the
AX job the Customer table in AX is searched, and each customer record is replicated to Lotus Notes.

2.1.1 Creating the Customer Database in Lotus Notes

The installation CD contains a template for creating a simple customer table in Lotus Notes.

The table is created as follows:
1. Copy the file CustTab.ntf from the diskette to your local Lotus Notes client data directory.
2. Start up your Lotus Notes client.
3. Create a new database [CTRL] + [N].
4. Fill out the dialog as shown below.
5. It is important that "Department" is specified as Template.
6. Select OK.

 11

2.1.2 AX code

The code for this case is contained in the file IntKitCase.xpo (located in the directory you installed
INTOGRATE AX (<AX Client-bin directory>\intoint\documentation\IntKitCase.xpo).

static void IntKitCase(args a)

{

 ax2ln ax2ln = new ax2ln();

 CustTable CustTable;

 ;

 ax2ln.Init();

 ax2ln.OpenServer('LOCAL');

 ax2ln.Logon('Customers.nsf');

 ax2ln.Form('CustTable');

 if (ax2ln.GetNotesText() != '')

 return;

 while select CustTable

 {

 ax2ln.GetUnique('AccountNumber',CustTable.AccountNum);

 if (StrLen(ax2ln.GetNotesText())<=2) // Not found

 {

 ax2ln.CreateNew();

 print CustTable.AccountNum," ",CustTable.Name,' created';

 }

 else

 print CustTable.AccountNum," ",CustTable.Name,' modified';

 ax2ln.SetFieldValue('AccountNumber',CustTable.AccountNum);

 ax2ln.SetFieldValue('Name',CustTable.Name);

 ax2ln.SetFieldValue('Address',CustTable.Address);

 ax2ln.SetFieldValue('Country',CustTable.Country);

 ax2ln.SetFieldValue('Attention',

EmplTable::Find(CustTable.ContactPersonId).name);

 ax2ln.SetFieldValue('Phone',CustTable.Phone);

 ax2ln.SetFieldValue('Fax',CustTable.TeleFax);

 ax2ln.Commit();

 }

 pause;

}

2.1.3 Initialization

First the object used for the communication to Lotus Notes is prepared:

Ax2ln = new Ax2ln();

And a reference to the customer table is created:

CustTable CustTable;

Hereafter after the integration is initialized:

Ax2ln.Init();

We specify “Local” to identify, that the database is placed on the local client:

Ax2ln.OpenServer(’LOCAL’);

Then we create the connection to the Lotus Notes database and logs on:

ax2ln.Logon('CustTab.nsf');

12

We specify that the design-information (e.g. field-names) should be fetched from the form
“CustTable”:

ax2ln.Form('CustTable');

Now we check whether the connection has succeeded:

if (ax2ln.GetNotesText() != '') return;

2.1.4 WHILE SELECT LOOP

The customer table is traversed in a normal way:

while select CustTable

2.1.5 Update or Create?

Next step is to decide whether to insert a new document in Lotus Notes or to update an existing doc-
ument. We do that by checking whether we can find an existing document fulfilling the unique key:

ax2ln.GetUnique('AccountNumber',CustTable.AccountNum);

if (StrLen(ax2ln.GetNotesText())<=2) // Not found

{

 ax2ln.CreateNew();

 print CustTable.AccountNum," ",CustTable.Name,' created';

}

else

 print CustTable.AccountNum," ",CustTable.Name,' modified';

The method GetUnique retrieves a document in Lotus Notes by a search-key (AccountNum in this
case). If there is only one document matching the key, a reference (DocId) to the document is re-
turned – otherwise an error-code is returned. A reference is always identified by a string of more than
2 characters. So in this case, we check the length of the result-code and decide whether a valid doc-
ument has been found. If not we decide to create a new document with the method CreateNew

2
.

2.1.6 Specification of Document Contents

Now we have a valid document (new or existing).
We then insert the values for some of the fields. The updated document is saved with the Commit
method:

ax2ln.SetFieldValue('AccountNumber',CustTable.AccountNum);

ax2ln.SetFieldValue('Name',CustTable.Name);

ax2ln.SetFieldValue('Address',CustTable.Address);

ax2ln.SetFieldValue('Country',CustTable.Country);

ax2ln.SetFieldValue('Attention',EmplTable::Find(CustTable.ContactPersonId).name);

ax2ln.SetFieldValue('Phone',CustTable.Phone);

ax2ln.SetFieldValue('Fax',CustTable.TeleFax);

ax2ln.Commit();

2
 Under normal circumstances we would check the error-code and only create a new document if the

error-code told that an existing document could not be found. If other errors where returned these
should be handled in a proper way.

 13

3. Using the Integration Kit

This section describes how the integration kit is to be used in connection with coding in AX. In section
4 the individual commands will be described in more detail.
A few more specialized methods are only described in section 4.

3.1 Call of the AX methods

To be able to access Lotus Notes from AX, an object of class ax2ln must be defined. This can be
done with the statement:

ax2ln ax2ln = new ax2ln();

The methods of the class ax2ln can be divided in two categories: Methods that returns a value directly
and methods that return a value indirectly.

An example of the first type is the method ServerName. This method directly returns the name of the
current selected server. An example is shown below:

print ax2ln.ServerName();

An example of the second category is DeleteCurrent. This method does not return any result directly.
A value is returned indirectly in an internal variable. This variable contains a result-code from calling
the DLL and can contain an error code. The value of the variable can be fetched by the method
GetNotesText. In most cases a value of “” (blank) indicates no error calling the last command. A non-
blank value normally specifies an error-code. Se section 4 for a further description of the result-codes.

In this section all methods are identified by bold italic. The first reference to a method is identified by
bold, italic and underscore. All methods are described further in section 4.

3.2 Connecting to Lotus Notes

Some of the integration kit commands concern the creation and closing of sessions with Lotus Notes.
Other commands are for the selection of application elements in Notes.

3.2.1 Initialization of Link to DLL File

The Init method creates a link between AX and the DLL library handling the system calls to Lotus
Notes. This method must be called before the other integration methods can be used. Calling the
method more than once will not cause problems. After the first call of the method, subsequent calls
are ignored.

On call of the init-method, link is not created to Lotus Notes. Link is not created until the method
Logon is called.

3.2.2 Creation of Session to Lotus Notes

To communicate with Lotus Notes, a Lotus Notes database must first be selected, and login can be
made.
If access is made to a Lotus Notes database which is not located on the Local workstation ("Local"), a
password normally must be entered (in certain cases a password will also be required for "Local"
databases). This needs only be done once. The password to be specified corresponds to the current

14

Notes user-id password. This can be set up via the Lotus Notes client. Specification of the current
Notes user is registered in the NOTES.INI file. If the user chooses to change the current ID in Lotus
Notes (/File/Tools/Switch ID), this ID password must be used on the next login from AX.

Generally, the integration kit uses the current Notes setups.

If e.g. a current location with no link to a Notes Server has been specified ("Island"), it is not possible
to access the Lotus Notes servers from AX either. In this case the Lotus Notes client must be started
up and the location changed in order to get access to the servers.

The user rights applying to access to Lotus Notes from Dynamics AX are identical to the current rights
of the ID user.

3.2.2.1 Selecting Notes server

Specification of the Notes server is by the methods OpenServer or OpenDialogue.

By the first method the server name is specified as Parameter. The other method makes it possible to
browse between servers and directories (as on opening of databases in Lotus Notes). As the link on
table level between AX and Lotus Notes most often is unchangeable, the first method is most com-
mon.

When using the method OpenDialogue the selected server and database can be fetched by the
methods GetDialogServerName and GetDialogDatabaseName. Often the method Logon is called
afterwards to overrule the selection of database – in other words only using OpenDialogue to select
server.

Is “Local” used as servername databases on the local workplace are used.

Example:

ax2ln.Init();

ax2ln.OpenServer(‘local’);

3.2.2.2 Selecting Notes database

After specification of server, the Notes database wanted is to be specified. As mentioned above, this
can be done by interactive selection with the method OpenDialogue or by direct specification of the
database name in the method Logon. In the latter case the database file name is specified as pa-
rameter. Remember to type two backslashes when specifying subdirectories.

Example:

ax2ln.Logon("mail\\jdoe.nsf")

Apart from specifying a work database in Lotus Notes, the method also creates the actual link to Lotus
Notes. It is checked whether access to server and database is possible. Furthermore the method may
require a password from the user if the database is located on a Notes server, and a password has
not previously been entered.

3.2.2.3 Selection of Notes Application Elements

For exchange of data between AX and Lotus Notes, either a Notes view or form must be selected.
Notes view is used in connection with execution of Notes queries, whereas Notes forms are used for
processing of fields.

 15

All data processing methods require that current Notes view and/or current Notes form have been
selected.

For selection of application elements, the methods Form and View are used.

ax2ln.Form(“Memo”);

ax2ln.View(“Stationery”); (or ax2ln.View(“($All)”);)

3.2.3 Closing the session

If alternating sessions to Lotus Notes from AX are wanted, one session per element must be created.
At the end of the program code, the current session must be closed by the command Close.

This method does not interrupt the link to the DLL library which was created by the method Init.
After use of Close, a new link with Logon must be created on the next access to Lotus Notes.

3.2.4 Switching sessions

It is possible to operate with multiple simultaneous sessions. Each session has its own connection to
Lotus Notes, with server, database, form, view, current document and more.
To change between sessions use the command SetHandle.

Be cautious when using multiple sessions. Confusion about which session is active is often responsi-
ble for errors.

Use the command GetHandle to get the current session number.

3.3 Current Values

Some of the methods in the integration kit hold information on various current values. Some of these
values concern the current session with Lotus Notes as was described in the preceding section.
All methods return values directly.

3.3.1 Information on Current Session

The following list shows the methods returning this type of information:

ServerName
DatabaseName
FormName
ViewName
ShowAll

The methods correspond to the methods creating the links.
Example:

ax2ln.OpenServer('Local');

print ax2ln.ServerName;

will print "Local" on the screen.

16

Showall displays miscellaneous information regarding the current session in a popup window.

3.3.2 Information on DLL Program Library

The method DLLVersion returns the version number of the DLL library.

The command IsDemoVersion lets the user find out if the programs are currently integrated via a
limited demo version or a full version of INTOGRATE.

3.3.3 Managing temporary files

On receipt of more documents from Lotus Notes temporary files in the form of comma-delimited files,
are used as media.
The files have the following structure:

Line 1 "DocId", "fieldname1", "fieldname2",...,"fieldname i"

Line 2, first document "DocId 1", "field1 value", "field2 value",..., "field i value"

Line 3, second document "DocId 2", "field1 value", "field2 value", ..., "field i value"

... ...

Line n, last document "DocId n", "field1 value", "field2 value", ..., "field i value"

As appears, the first part of the comma-delimited file is a list of the fields in the selected form. All fields
are returned in the comma-delimited file. When the comma-delimited file is loaded into AX, superflu-
ous fields may then be ignored. Also the methods ClearQueryFields and AddQueryField can be
used to delimit the fields returned in the result set.
Apart from containing all fields, the file also specifies a unique key (DocId) for the document. It can be
used for registration of documents for later selection (see section 3.4.6). The DocId field is the first
value in each line.

The method SetTmpFileName is used for allocation of name to a temporary file.
If a Parameter for the method is specified, this will be used as file name.
If no Parameter is specified, a unique file name will automatically be computed or read from erp2ln.ini.
Note that the temporary file will only be created in connection with execution of the methods Query or

QueryRichTextField.

Remember to delete the temporary file after use - use e.g. the method DeleteTmpFile.

Using the command GetTmpFileName, the user can find the name of the current temporary file in
the current session.

 17

3.4 Query and lookup in Lotus Notes

There are many methods for making queries in Lotus Notes:

Query
QueryField
QueryUnique
QueryView
GetUnique
SelectID
SelectUNID
SearchView
SearchNext

These methods have different fields of application as described below.

3.4.1 General Query

The method Query is used for execution of a standard Notes query. The selection criterion is speci-
fied as Parameter. The Parameter can be compared to "View selection" in Lotus Notes. In order to
use this method some knowledge of Lotus Notes is required. The command "SELECT" may be omit-
ted when calling the method.
Here are some examples of call of the method:

ax2ln.Query('Select @ALL')

returns all documents in the database.

ax2ln.Query("Quantity>100")

returns all documents in which the field "Quantity" has a value higher than 100.

By using the method QueryView, all documents in current view are returned.
Search results are always returned in a result-set in memory. Furthermore the result can be returned
in a comma-separated file for further processing (see section 3.3.3). Therefore the results can subse-
quently be processed via the comma-reading functions in AX (CommaIO).

By using the Query method very flexible searches in Lotus Notes can be performed. But this method
uses full-text queries in Lotus Notes and on larger databases this method can be quite slow. An alter-
native lookup method is available in the method SearchView (see section 3.4.4).

3.4.2 Handling sets of results

It is also possible to process the result of the query without using comma files. By means of various
“move” commands, it is possible to specify the first, the next, the previous and the last command of
the query. The methods are:

MoveFirst
MoveNext
MovePrev
MoveLast

The method GetFoundDocs informs the user of the number of documents in the result.

It is a good idea to combine this method for handling queries with a call of SetTmpFileName with an
empty file name as the parameter. This way, the result will not be written to a comma file as well.

18

3.4.3 Query on Unique Document

With the method QueryUnique a query corresponding to the above Query, can be made which re-
turns one document directly. To use this method it must be certain that there is only zero or one doc-
ument that can be returned. However, this is often the case when using integration with AX, which
almost always has at least one unique identification of a record.

3.4.4 Query by view

Since in the integration kit, queries are full text searches, this method can be quite slow in connection
with large amounts of data. In this case it is better to do query in Lotus Notes using the available views
(corresponding to the index in AX). However, a view can only be used for a query if all the columns
searched are of the type “text” and sorted. The first search value is searched for in the first column. If
needed, the second search value is searched for in the second column, etc.

The method SearchView is used for queries by search value. The method returns the first document
where the document matches the search key(s),
If the user wants to specify several search keys these must be separated by a semicolon, e.g.
SearchView(´Smith; John´).

ax2ln.View(‘MyView’);

ax2ln.SearchView(‘John Doe;Sales Department’);

If the user wants to se a different separator, it can be changed by the method SetDelim.
Queries by view can also be carried out by use of the method SearchFirst, which selects the first
(top) document of the current view.
Using SearchNext the user can go to the following documents. This way, a view can be traversed as
shown in the following example:

ax2ln.SearchFirst();

while (StrLen(ax2ln.GetNotesText)>2)

{

 print ”Name: ”, ax2ln.QueryField(’Name’);

 Ax2ln.SearchNext();

}

Notice, that SearchNext does only return documents matching the search-key(s) after SearchView.
After SearchFirst all documents in the view can be traversed with SearchNext.

3.4.5 Query on Field Value

Another type of query is that on field values of a current document. This is performed by the method
QueryField.

To be able to use this method, a current document must have been selected, e.g. by one of the meth-
ods SelectID, SearchFirst, GetUnique or others.

Example:

ax2ln.GetUnique("Number", Number);

print Number,": ",ax2ln.QueryField("Name");

QueryField always returns a text value (STR). Thus it is the task of the AX programmer to convert the
value to the correct AX format, e.g. by Str2Num or Str2Date. This area of course requires a certain
level of knowledge of the current Lotus Notes formats, e.g. date values etc.

 19

In connection with queries in rich text fields, the text may be very long. QueryRichTextField can be
used for handling this situation. It works like QueryField and will return a value in the same way –
directly in the call. But in addition, a the field value will also be written to the current temporary file, e.g.
to be loaded into AX.

Example:

AsciiIO fileRichText;

str strRichLine;

...

ax2ln.QueryRichTextField('RichTextValue');

fileRichText = new AsciiIO(ax2ln.GetTmpFilename(), 'R'); // Open temporary file.

if(fileRichText) {

 fileRichText.inRecordDelimiter('\r\n');

 [strRichLine] = fileRichText.read(); // Read first line from file

 while(fileRichText.status() == IO_Status::OK) {

 print 'Data: ', strRichLine; // Print line

 [strRichLine] = fileRichText.read(); // Read next line from file

 }

}

Use of QueryField requires the field to be defined in the current form. Under certain circumstances,
there are items in Notes documents, which are not defined in the form. In such cases, the method
GetFieldValue can be used since it does not check the field definition.

3.4.6 Unique Query

For data to be processed in a relational database, unique selection of all data must be possible. This
also applies to AX. But Lotus Notes is not a relational database, and Notes has not been designed to
support unique keys as has AX for example.
But for integrating AX with Notes, it is necessary to be able to make unique queries.
The integration kit has three methods for handling this: SelectID, SelectUNID and GetUnique. All
return a current document which may then be processed by e.g. QueryField or SetFieldValue.

GetUnique is used in situations when there is a Unique index-key in AX which can make a unique
selection of document in Notes. This might e.g. be "Account number" in the chart of accounts that will
return one account. But for example it cannot be "Account number" in ledger transactions as many
transactions have the same account number.

Example:

ax2ln.GetUnique(’Number’, Number);

print Number,": ",ax2ln.QueryField(’Name’);

GetUnique has two Parameters. The first Parameter is a field name; the second Parameter is a field
value. The method will either return an error value or a DocId. Normally error values are found in the
interval "1" to "99". If the return value (GetNotesText) has more than two characters, it is a reference
to a document. The document is active immediately. Subsequent query via SelectID is not necessary.

SelectID is used in situations when direct query via a known DocId is wanted. This DocId might be
produced as the result of a Query which returns DocId in the comma-delimited file.
DocId is unique to the database. But the value can be "re-used" after deletion in the Notes database.
Furthermore DocId is only unique to the individual instance of the database. In connection with replica-

tion or “Cut-and-paste”, DocId may be changed. SelectID will therefore not necessarily give the same

results on other replica of the database. Instead use GetUnique (refer to Appendix 2.6).

To avoid this problem, the Lotus Notes Universal Document ID (UNID) with the method SelectUNID
can be used for the query. The use is analogous to SelectID, but UNID is unique across replicas of
the same database. In return, UNID is made up of 32 characters whereas a DocID is made up of 8
characters.

20

3.4.7 Comparison of Values

Often there is a need for being able to compare field values in Lotus Notes and Dynamics AX. It is
especially necessary on update of existing documents in Notes by which unnecessary update of a
field may result in an "unread" mark being set. This can be avoided if updates are only carried out in
case of differences between Notes and AX. The functionality can be obtained by reading the Notes
value by QueryField and subsequently comparing the values. By the method CompareField the
entire comparison can be performed by one command.
An example of the use of this method is shown below:

...

if (ax2ln.CompareField(‘Account’,LedgerTable.AccountNum) != ‘’)

{

 ax2ln.SetFieldValue(‘Account’,LedgerTable.AccountNum);

 ax2ln.Commit;

}

...

An alternative is to specify that in connection with all data transferred to Lotus Notes, the “old” value
must be compared with the “new” value. And only where these values differ will the new value be
saved in Notes. This way, unnecessary updates with resulting setting of e.g. unread marks can be
avoided. However, this method can be a bit slower.
The command SetKeepUnread(TRUE) activates this feature.

3.5 Data Manipulation

After establishment of a session with Lotus Notes and maybe selection of a document for processing,
data can be processed by means of different methods. These methods make it possible to create,
edit or delete documents.

3.5.1 Creation of a New Document

The method CreateNew creates a new empty document in Lotus Notes.
After call of CreateNew the field values should be filled in by the method SetFieldValue.

Remark, that the document is both created and committed. An empty document will therefore exist
after calling CreateNew.

3.5.2 Allocation of Field Values

SetFieldValue is one of the most essential methods in the integration kit. By this method the values of
the fields in Lotus Notes documents are changed.
The method is called with at least two Parameters: field name and field value. If a third Parameter is
set to TRUE, this specifies an immediately update to Lotus Notes. Alternatively Commit is called after
allocation to all fields.
Field value must always be a text string or text variable. Thus the AX programmer should convert
other field types to a string before the call.

Example:

 21

ax2ln.SetFieldValue(‘Date’,Date2Str(LedgerTrans.TransDate,123,2,3,2,3,2));

In certain situations the order in which the fields are filled in may be of importance. Therefore it is rec-
ommended to fill in the fields in the same order as if the fields were to be filled in via the Notes form.

SetFieldValue can also be used for rich text fields, but the contents of the field will be replaced each
time the method is called. However, more lines can be added by entering a new line (Num2Char(10))
in the text to be transferred as a parameter.

If the contents of a file are to be inserted in a rich-text field, the method ImportFile is used. The appli-
cation of this method corresponds to that of MailBodyFile. See section 3.8.2 for a detailed description
of import of files.

If the need to set a field value in an item where no field is defined in the form arises, the method
PutFieldValue can be used. Since this method is intended for situations when the field is not defined
in the form, placing the field name first in accordance with the following pattern:

 #Datatype#, e.g. “ax2ln.PutFieldValue(‘#DATETIME#Date’,D)”.

If no field type is specified and the field is not present on the form-design the data will be saved as a
text type.

Data transferred to DateTime fields/items must always be formatted as: “dd-mm-yy” or “dd-mm-yyyy”.
That is delimiting day, month and year by a dash and with day first and year last.

Is there a need to append test to a field/item, where there is already data present, the method
AppendFieldValue can be used. The method corresponds to the method SetFieldValue, but with
AppendFieldValue the existing content in the field/item is kept. If this is used for multi-value fields
remember to delimit values with semi-colon.

ax2ln.SetFieldValue('KeyWord',"Value 1");

ax2ln.AppendFieldValue('KeyWord',";Value 2");

ax2ln.AppendFieldValue('KeyWord',";Value 3");

The method can also be used for transferring multiple lines to a rich-text field in Lotus Notes. Here
lines are delimited by Num2Char(13)+Num2Char(10).

A variant of this method is AppendTextList that is used for entering data to multi-value fields (and
only to multi-value fields). Here semi-colon shall not be used as delimiter.

3.5.3 Deletion of Documents in Lotus Notes

The integration kit features two methods that enable deletion of documents in Lotus Notes.

DeleteID can be used for deletion of a document by specifying DocId. By this method it is not neces-
sary first to retrieve a document as current document.

Similarly, DeleteCurrent is used for deletion of a current document which has e.g. been found via the
method GetUnique.

After deletion of a document via DeleteCurrent, a new current document must be selected before
further data manipulation can be made with methods that process the current document (e.g.

SetFieldValue).

22

3.5.4 Updates of changes

In AX the concept TTS is applied. By TTSBEGIN, TTSABORT and TTSCOMMIT data updates can
be controlled and e.g. aborted. The integration kit features a facility that corresponds to this system.
However - only one document can be handled at a time.

To update changes, the method Commit must be called afterwards.

This must be done before another current document is selected and before the current session is
closed.
Similarly, this may be utilized to cancel changes by not applying Commit.

A variant of Commit is CommitNoRecalc which also saves the current document, but which does
not create an item for each field on the current selected form.

Commit and CommitNoRecalc saves the document without calculating formulas on fields and the
form. If formulas should be execute the method CommitWithForm must be used. This method
works in the same way, as if [Ctrl]-[S] is pressed in the Lotus Notes client to save an open document.
This method can of course be slow compared to the two other methods, because of the extra data-
processing. If no formulas is present on the form, Commit and CommitNoRecalc can be used to
improve performance.

The method SetComputeWithForm, can be called to adjust the integration kit to always re-calculate
formulas when calling Commit .

The table below illustrates the difference between the three commit methods:

 Create item for each field on form Recalculate formulas on fields and forms

CommitNoRecalc - -

Commit X -
3

CommitWithForm X X

3.5.5 Information on Active Document

Using the update methods will result in error messages if a Notes document has not been selected.
For checking whether a document is active, the method DocId can be used. This method returns the
DocumentID of the active document.
The method can also be used after QueryUnique and GetUnique (if GetNotesText is not read im-
mediately after call of these methods).

If desired, UNID can be used instead by calling the method UNID.

For more advanced use, further information about the current document and the individual fields can
be obtained.

The command GetDocInfo provides the user with various information about the current document,
including e.g. the date of creation and last editing, information about whether “parent document”, etc.

Similarly, GetFieldLength and GetItemInfo can provide information about the values of the individual
fields and items.

3
 If SetComputeWithForm is set to TRUE formulas will be calculated though.

 23

3.6 Rich-text

AX does not support rich-text fields as in Lotus Notes. But there may be some situations in which it is
needed from AX either to view information in Lotus Notes that is stored in rich-text fields or to store
rich-text information in Notes.

3.6.1 Update to Notes

Via the integration kit it is possible to immediately store ordinary text from AX in a rich-text field in Lo-
tus Notes. Thus it is not necessary to distinguish between the field types being updated in Notes, i.e.
whether it is a "Text" or "Rich-text" type of field. The method SetFieldValue can be used for both field
types.
Alternatively use the methods ImportFile.

3.6.2 Reading from Notes

The same applies to reading data in Lotus Notes. Here the method QueryField is used in the normal
way. The integration kit will try to return data in a format that AX can read. Rich-text fields in Lotus
Notes may contain some types of information that are not "visible" in AX, e.g. pictures, attachments,
formatting codes, more lines etc.
All formatting codes are removed on reading from Lotus Notes. Pictures, attachments etc. are not
transferred. If a rich-text field contains more lines of text, these are returned by the integration kit as
one string in which new line is marked by the ASCII value 10 (LF). Then it is the task of the program-
mer to separate it into more AX lines, e.g. in a note field. Alternatively the method
QueryRichFieldValue can be used; whereafter the value can be read from a file.

If the method Query is used, by which the result is returned in a comma-delimited file, the method
applied is slightly different. If a Notes document contains one or more rich-text fields with more lines,
the information will be distributed on several lines by the comma-delimited file when the field is trans-
ferred to this file.

Example:

Number (Text) 1234

Name (Text) John Doe

Description (Rich Text) A customer
Created with
Three Lines

This document would give the following lines in the comma-delimited file:
....

"1234","John Doe"," A customer

Created with

Three Lines "

....

When this comma-delimited file is loaded to AX, it will read these three lines as three docu-
ments/records.

This problem can be solved in two ways. Either rich-text fields are isolated so they are not included in
the comma-delimited file directly, or storage is only made of the first line of the rich-text field.

3.6.2.1 Rich-text in Separate Files

If the entire contents of the rich-text fields are to be kept, a method is chosen which saves all rich-text
information in separate comma-delimited files. One file per document and per rich-text field. To have
access to the contents of these fields, they must be loaded via separate loading into AX.

24

The separate rich-text files are stored in a subdirectory under the name "RichText".
The files are named according to the following syntax:

<DocId>.<FieldNumber>

Example: "00002E40.3" where "00002E40" is the DocId of the Notes document, and "3" specifies that
it is the third field in the form.

3.6.2.2 Selection of Method

If it is chosen not to save the contents of rich-text fields in separate files, they will be transferred like
other field types to the comma-delimited file. However, the contents may be abbreviated to the first
line if the field has more lines.

Selection of method is by the method SetRichSepMode. The current value can be read by calling the
method GetRichSepMode. The value TRUE specifies separate files, whereas FALSE specifies stor-
ing of rich-text values in the comma-delimited file.

Default value is storing the first line of rich-text fields in the comma-delimited file (FALSE).

3.7 File Attachments

The integration kit has various methods for the handling of attachments in Notes documents. These
methods may be used for attaching e.g. a text file from an AX report to a Notes document.
However, all types of files can be attached.

Attachments are attached to a Notes document via the method AttachFile. The first Parameter speci-
fies the name of the file. Another Parameter may specify the name that the attachment is given in the
document.

Example:

ax2ln.AttachFile('c:\\autoexec.bat','AUTOEXEC').

If no other attachment name is specified, the attachment will be created with the same name as the
file (excluding preceding path. In the example the name would be "autoexec.bat").

Existing attachments can be detached, i.e. copied to a file, via the method DetachFile. In this case
too, the file name is specified as the first Parameter. This file name must not necessarily be the same
as the file name of the file that was originally attached. The file can be detached with another file
name. As described above, any attachment name is specified as the second Parameter.
Example:

ax2ln.DetachFile(‘c:\\autoexec.new’,’AUTOEXEC’)

Here, the file of the preceding example is saved as a new file so the original file is not overwritten.

Whether the current document has attachments can be detected by calling the method ExistsAttach.

 25

if(ax2ln.ExistsAttach(’config.sys’) {

 // Attachment exists and can be fetched

 ax2ln.DetachFile(‘config.sys’);

} else {

 // Attachment does not exist.

}

Furthermore, the integration kit has methods for deletion of attachments, i.e. DeleteAttachment and
DeleteAttachmentAll. These methods may either be used for deleting one or all attachments.

All actions on attachments operate with attachments directly in the document. Attachments in rich-text
fields are handled, but the icon representing the attachment remains on the document.

3.8 Mail

Apart from offering the possibility of exchanging data with Lotus Notes, the integration kit has a facility

for sending mails directly from Dynamics AX.

Building code for sending mails from AX differs from the preceding methods as set-up of mail server,
database and forms needs not be carried out by the user. The integration kit will by itself find the nec-
essary information in NOTES.INI. Thus server etc. must not be specified with the methods Server,
Logon, Form and View.

3.8.1 Preparing Mail

The mail routine of the integration kit can be divided into three steps:

1. Preparation of mail
2. Building up the actual mail contents (body text)
3. Sending of mail

First, the mail is prepared. This implies specification of the following information:

 "SendTo", the E-mail address of the receiver (MUST BE SPECIFIED)

 "Subject", mail heading

 Optional "CC", any other receivers of copy (Carbon Copy)

 Optional "BCC", any other receivers of copy (hidden from the receiver - Blind Carbon Copy)

Preparation of mail is by the method PrepareMail. The method receives 2-4 Parameters in the above
order. CC and BCC (the third and fourth Parameter) are optional.

Call of the method might look as follows:

ax2ln.MailPrepare("John Doe/Acme","New","James Kirk/Acme,Ted Masters/Acme")

In this example two persons have been specified as receivers of copy of the mail.

The individual elements of the mail header can also be set by the methods MailSetSendTo,
MailSetCC, MailSetBCC and MailSetSubject.

3.8.2 Filling in Mail Contents

The next step is to fill in the body text of the mail (the body field).

This can be done in two ways. A simple method by which only ordinary text is filled in, and a more
advanced method by which it is possible to combine text and contents of e.g. ASCII files, rich-text files
(RTF) and/or pictures (certain formats).

26

The simple method is used for creating simple mails that consist of ordinary body text, without the
need for formatting etc. This method is faster than the advanced one.
The body text is built up by calling the method MailBodyText. The method may be called an arbitrary
number of times. Each call adds a new line to the mail. Mails built up by this method should be reada-
ble by all mail systems. This is especially interesting in cases where the receiver does not apply Notes
mail but e.g. Internet mail.
Many of the facilities of the advanced method will often not be readable by other mail systems (and if
they can be read, the formatting codes used are most often left out anyway).

The more advanced method is used via two methods:
MailBody which is used analogously to the above method (MailBodyText) and MailBodyFile which
is used for merging the contents of a file.
The facility for merging e.g. rich-text files (RTF) makes it possible to format the contents of the mail,
e.g. with various fonts. However, this requires that the contents be built up by means of rich-text
codes. Contact Intoint for more information on this.

Both methods can be supplemented with a facility for attaching files to mails, i.e. via the method
MailAttachFile. This method corresponds to AttachFile (see section 3.7).

3.8.3 Sending of mail

When the mail has been prepared, it can be sent. This is simply done by the method MailSend.

A Parameter in the form of a file name may be specified. If such a Parameter is specified, the con-
tents of the specified file are entered in the body field.
Existing contents that have been filled in via the methods mentioned in the preceding section are kept.

Below are shown two examples of AX jobs sending a mail:

Example 1:

ax2ln ax2ln = new ax2ln();

;

ax2ln.init();

ax2ln.MailPrepare('abc@acme.dk','Congratulation');

ax2ln.MailSetBodyText("Happy birthday");

ax2ln.MailSend();

Example 2:

ax2ln ax2ln = new ax2ln();

;

ax2ln.init();

ax2ln.MailPrepare('Support@acme.dk','Error');

Ax2ln.MailSetBodyFile("c:\\pictures\\logo.bmp");

ax2ln.MailSetBody("");

ax2ln.MailSetBody("I got this error:");

ax2ln.MailSetBodyFile("c:\\temp\\scrndump.bmp");

ax2ln.MailSetBody("");

ax2ln.MailSetBody("Please help me out");

ax2ln.MailSetBodyFile("c:\\pictures\\sign.bmp");

ax2ln.MailAttachFile("c:\\AX\\MyProject.xpo");

ax2ln.MailSend();

3.8.4 Mail through Lotus Notes client

The approach described above handles sending mails by coding - without user-interaction.

 27

With the command MailComposeOLE it is possible to activate the Lotus Notes mail-client ready to
send a new mail. The mail-fields SendTo, CC, BCC and Subject can be prepared as described
above.

3.8.5 MAPI Mail

If the company does not use Lotus Notes for mailing (but e.g. only as a Lotus Domino Web server) it
is possible to use the MAPI protocol for simple mails (without attachments, etc.). Microsoft Outlook
uses the MAPI protocol among others.

MAPI mailing can be activated by using MailSetMAPI(TRUE).

If needed, the methods MAPIProfile and MAPIPassword can be used to specify the current users
MAPI profile and passwords. This will prevent boxes prompting the user for such information.

Please, notice that not all Lotus Notes mail features are available in this integration kit for

MAPI.

3.8.6 Automatic Error Messages via Mail

The integration kit has a facility by which messages on errors occurring in connection with integration
are mailed to e.g. the person responsible for IT. This may facilitate internal support as the mail con-
tains most of the relevant information. This facility is especially well suited when using the integration
kit on a batch server where error messages may not necessarily be seen immediately.

The facility is activated by the method MailErrorTo in which the receiver is specified as Parameter.
More receivers can be specified, separated by commas. If e.g. the following AX code lines are speci-
fied in the beginning of an AX script, John Doe will automatically be informed of all error situations.

...

ax2ln.init();

ax2ln.MailSetError("John Doe/Acme")

An example of a mail with error message is shown below:

To: John Doe/Acme

cc:

Subject: ERP2LN ERROR: Form (2): Form werjkhewkjr does not exist

Error: Form (2): Form werjkhewkjr does not exist

Date: 19/8/03 13:16:40

DLL Version: 1.0.1.143 - 18.08.2003

Handle: 2

User: CN=Flemming Nielsen/O=Intoint

Server: dev01

Database: Action\Department

Form:

View:
DocId: 0

3.9 Information about Notes design

In certain situations the user may want to query whether a field, form or view exists in a Notes data-
base, or the user may want a list of the existing design elements.

28

The integration kit holds a number of methods capable of supplying this information. Queries can be
made on names of fields, forms and views.

The method is the same for all three types of design elements. To be able to query, the query basis
must be prepared. For example, to make form queries, the user must first log on to the database. To
make field queries, the form must first be selected.

3.9.1 Query on the Existence of Design Element Name

It is possible to query on the existence of design elements by the following methods:
ExistsField, ExistsForm and ExistsView.

If the value TRUE is returned, the design element exists in Notes. If FALSE is returned, it does not
exist. Error values can be retrieved by GetNotesText.

3.9.2 Listing Notes Design Elements

The integration kit has 6 methods for listing e.g. fields in a form or views in a database, i.e.

FirstFieldName and NextFieldName
FirstFormName and NextFormName
FirstViewName and NextViewName

A printout of all fields in a form could e.g. be designed as follows:

str 40 f;

ax2ln ax2ln = new ax2ln();

;

ax2ln.init();

ax2ln.OpenServer('LOCAL');

ax2ln.Logon('mail\\xxx.nsf');

ax2ln.Form('Memo');

f = ax2ln.FirstField;

print "Fields on Memo form in Lotus Notes”;

while (F != '')

{

 print f;

 f = ax2ln.NextField;

}

pause;

A similar script can be made for forms and views.

3.9.3 Type of Design Element

The integration kit also has a facility for giving information about the types of the various design ele-
ments.

The method FieldType returns the type of a Notes field, e.g. "RichText" or "Number".

The method FormType returns the type of the current Notes form: "Main", "Response to Main" or
"Response to Response". To use this method, the form must have been selected by the method
Form.

 29

Below is an example of a script listing forms and their types in the Notes help database:

STR 40 f;

ax2ln ax2ln = new ax2ln();

;

ax2ln.init();

ax2ln.OpenServer('LOCAL');

ax2ln.Logon('help4.nsf');

f = ax2ln.FirstForm;

print "Forms in the database help4.nsf”;

WHILE (f != '')

{

 ax2ln.Form(f);

 print f,": Type = ",ax2ln.FormType;

 f = ax2ln.NextForm;

}

pause;

At present the integration kit has no analogous functions for Notes Views.

However, the kit does hold the method DatabaseTitle which returns the full name of the current data-
base (not only the file name (see DatabaseName)).

30

3.10 Debugging

The integration kit has various facilities for solving problems when developing applications with inte-
gration between Dynamics AX and Lotus Notes.

Most methods return a return-code that can be examined through GetNotesText. This variable can
then be tested after the call and any errors can be dealt with.

Here is an example:

ax2ln.Init;

ax2ln.OpenServer(Server);

if (ax2ln.GetNotesText !=’’)

 return 0;

3.10.1 Error messages

When an integration task has been defined and tested, errors will occur only rarely (e.g. if the Domino
server is shut down). Therefore, error messages from the DLL will usually appear in a message box.
If a run is not to be monitored and thus NOT to be interrupted by error messages, the error messages
can be de- or re-activated by the command Messages. If error messages are de-activated extra care
should of course be taken when dealing with areas of the AX code where errors may occur.
The command GetMessages can be used to find out if error messages have been activated.

3.10.2 Debugging on the screen

Since Dynamics AX communicates with Lotus Notes through a DLL it is not possible to see what
happens from the point when AX makes a call to Lotus Notes and until the call returns.

The method Debug activates a function which shows details from the DLL which is integrated with
Lotus Notes. This information comes directly from the DLL and is therefore shown in separate Win-
dows windows. The function is activated by Debug(TRUE) and de-activated by Debug(FALSE). The
function can also be de-activated by selecting "Cancel" in the debug windows.
Activation of Debug affects all sessions – not just the current one.

Below is an example of information from the DLL:

3.10.3 Debugging to log file

If a system is to be monitored and it is not possible to monitor the screen regularly or if the debugging
contains too much information to handle through the dialogue boxes, the debug information can be
sent to a log file.

The name of this log file can be specified by using the command LogFileName. ClearLog clears the
log file.
SetLLog(TRUE) activates debug logging in a file while SetLog(FALSE) deactivates it.

 31

Activation of logging affects all sessions.

32

4. Reference

This section describes the integration kit methods in the class ax2ln in detail.
Some sections may be omitted for some methods.
The description of each method follows the structure below:

Method name
Syntax

Description of how the method is called.

Parameters are written in brackets (< >). The contents between the brackets must be substi-
tuted by the current value.
For example, DeleteID(<DocId) may in practice look as

DeleteID(‘00003A08’) or DeleteID(ID).

Optional Parameter values (optional use of Parameter) are specified in square brackets ([]).
For example SetTmpFileName([<File Name>]) can be called with both the method

SetTmpFileName("Temp.$$$") and just SetTmpFileName().

Input

Input Parameters. Type is specified in parenthesis

Output

Any output Parameters.
If a value is returned directly (function) this is specified as "direct"; otherwise there is a speci-
fication of the variable to which the return value is returned, normally via GetNotesText.
Type is specified in parenthesis (normally "text").

Function

Description of the action(s) executed by the method.

Example

Example of the use of the method.
This paragraph may be omitted if example is deemed superfluous. The examples will often
only show parts of a program. Especially initialization and closing parts may be omitted.
In the examples it is typically assumed, that an object of class ax2ln has been defined:

ax2ln ax2ln = new ax2ln();

Error codes

Any error codes. These can, and should always, be checked after call of method so that the
AX code will handle any errors.
Error codes can always be read by calling the method GetNotesText.

Section

Reference to section(s) in this manual where the use of the method is described.

Other references

Reference(s) to related or similar methods.

The methods are listed in alphabetical order.

 33

AddQueryField
Syntax

AddQueryField(<Fieldname>)

Input
(Text)
1. parameter: Fieldname in Notes to be included at next Query

Output

None

Function

Specifies, that this Notes field should be included among the fields whose values is written to
the comma separated file at call to Query.
Fields are included in the file in the order they are entered by AddQueryField.

Example

ax2ln.ClearQueryFields():

ax2ln.AddQueryField('Number');

ax2ln.AddQueryField('Name');

ax2ln.Query("Nummer>'100'");

Error codes

"1": Field is not defined on current form
"2": Form not selected, use method Form
"3": No active document or no fields on form
”4”: Maximum number of search fields exceeded
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

Other references

ClearFields
Query

34

AppendFieldValue
Syntax

AppendFieldValue(<Fieldname>,<Fieldvalue>[,<COMMIT>])

Input
(Text, Text[, Boolean])

1. Parameter: Fieldname in Notes where value is to be appended
2. Parameter: Value
3. Parameter: Optional selection of commit

Output

None

Function

AppendFieldValue adds the value supplied in the second parameter to the current values
in the field supplied in the first parameter.
The value must be of type Text (convert if necessary). Existing content in the field is not
overwritten by this method.

If TRUE is specified as the third parameter, the value is stored in Notes immediately. This is
useful in the case of a single update.

AppendFieldValue is often used by multi-value fields. In these cases remember to delimit
the values with a delimiter character (default is ";" - see explanation at SetListDelim).

Example

ax2ln.SelectID(F.DocID);

ax2ln.SetFieldValue('Number',"Value 1");

ax2ln.AppendFieldValue('Number',"Value 2",TRUE);

Error codes

"1": Field not found in form
"2": Form not selected, use method Form
"3": Document not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

Other references

SetFieldValue
AppendTextList
SetListDelim

 35

AppendTextList
Syntax

AppendFieldValue(<Fieldname>,<Fieldvalue>[,<COMMIT>])

Input
(Text, Text[, Boolean])
1. Parameter: Fieldname in Notes where value is to be appended
2. Parameter: Value
3. Parameter: Optional selection of commit

Output

None

Function

This method appends the value supplied in the second parameter to the current values in
the mulit-value field supplied in the first parameter.
The value must be of type Text (convert if necessary). Existing content in the field is not
overwritten by this method.

The difference between AppendFieldValue and AppendTextList is, that AppendTextList
always adds a new values in a multi-value field.
Existing value are never overwritten by AppendTextList.

If TRUE is specified as the third parameter, the value is stored in Notes immediately. This is
useful in the case of a single update.

Example

ax2ln.SelectID(F.DocID);

ax2ln.SetFieldValue('Number',"Value 1");

ax2ln.AppendTextList('Number',"New multi value",TRUE);

Error codes

"1": Field not found in form
"2": Form not selected, use method Form
"4": Document not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

SetFieldValue
AppendTextList
SetListDelim

36

AttachFile
Syntax

AttachFile(<Filename>[,<Attachment Name>])

Input
(Text, Text)
1. Parameter: Name of file to be attached
2. Parameter: Optional name on attachment. If this parameter is not stated, the attachment
 will be named with the filename.

Output

None

Function

Attaches the file specified in the first Parameter on to the current document (Note: Attach-
ment is not made to a specific rich-text field, only to the actual document).
The attachment will appear at the bottom of the Notes document with its attachment name.
If another Parameter is specified, the attachment will get this name in the Notes document.
This facility may e.g. be used for a more descriptive name.

Example

ax2ln.GetUnique('Number',"123");

ax2ln.AttachFile('c:\\autoexec.bat',"Startup");

Error codes

"2": Form not selected, use method Form
"3": Document not selected
"98": The file supplied as first parameter does not exist or cannot be read.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.7

Other references

DetachFile
DeleteAttachment
MailAttachFile

 37

ClearLog
Syntax

ClearLog()

Input

None

Output

None

Function

Empties current log file.

Example

ax2ln.SetLogFileName(‘debug.log’);

ax2ln.ClearLog();

ax2ln.SetLog(TRUE);

ax2ln.Debug(TRUE);

ax2ln.SearchView(‘1234’);

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.10.3

Other references

SetLog
SetLogFileName
Debug

38

ClearQueryFields
Syntax

ClearQueryFields()

Input

None

Output

None

Function

Clear list with fields to be included in result set in next Query.

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Example

ax2ln.ClearQueryFields();

ax2ln.AddQueryField('Number');

ax2ln.AddQueryField('Name');

ax2ln.Query("Nummer>'100'");

Other references

AddQueryField
Query

 39

Close
Syntax

Close()

Input

None

Output

None

Function

Closes the session with Lotus Notes. After execution of the method, Logon must be exe-
cuted again to be able to communicate with Notes.

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.3

Other references

Logon

40

Commit
Syntax

Commit()

Input

None

Output
(Text)
Returns the 8 digit hexadecimal DocId on the updated Notes Document.

Function

Update of changes in Lotus Notes. Data is not saved in Lotus Notes until this method has
been executed. Only one active document can be handled. Change to a new current docu-
ment will mean that changes are not updated, unless Commit is called.

Beware that formulas on fields and form is not executed. If this is necessary call

CommitWithForm.

Example

ax2ln.GetUnique('Number',"123");

ax2ln.SetFieldValue('Name',"Sheet");

ax2ln.SetFieldValue('Responsible',"HKR");

ax2ln.Commit();

ax2ln.GetUnique('Number',"124");

Error codes

”1”: Form not selected, use method Form
"2": No data to save
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.4

Other references

CreateNew
SetFieldValue
DeleteCurrent
DeleteID

 41

CommitNoRecalc
Syntax

CommitNoRecalc()

Input

None

Output
(Text)
Returns the 8 digit hexadecimal DocId on the updated Notes Document.

Function

Corresponds to Commit (see this). However, while Commit creates an item for each field
on the current selected form, CommitNoRecalc does only create an item for each item set
by the integration kit.

Error codes

”1”: Form not selected, use method Form
"2": No data to save
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.4

Other references

Commit

42

CommitWithForm
Syntax

CommitWithForm()

Input

None

Output

If GetNotesText returns a 8-digits hexadecimal code, this code identifies the DocId, that the
saved document has in Lotus Notes. Otherwise the return-code is an error-code.

Function

This method works as Commit. But with CommitWithForm all formulas on fields and the
form will be executed. This method is used, if there are fields of type “computed” on the
form.
CommitWithForm can be considerably slower than Commit.

Error codes

”1”: Form not selected, use method Form
"2": No data to save
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.4

Other references

Commit
SetComputeWithForm

 43

CompareField
Syntax

CompareField(<Fieldname>,<Fieldvalue>)

Input
(Text, Text)
1. Parameter: Fieldname in Notes
2. Parameter: Value in AX to compare to.

Output
(Boolean: Direct)
FALSE: Notes Field-value is different than AX Value
TRUE: Notes Field-value is identical to AX Value

Function

Compares the value of the Notes field selected by the first Parameter to the value of the
second Parameter. Returns TRUE if the two values are identical.
Useful when reducing the number of updates, and can be used to avoid unnecessary up-
dates by which "read" marks are removed.
Note that the value is read directly and therefore there is no need to call GetNotesText.

Example

ax2ln.GetUnique('DepNumber',Number);

if (StrLen(ax2ln.GetNotesText())>2)

 if (ax2ln.CompareField("DepName",Name))

 print "Dep. ",Number," updated in Notes";

Error codes

"2": Form not selected, use method Form
"3": Field is not defined on Notes form
”99”: Error in parameters.

Section

3.3

Other references

QueryField

44

CopyToDatabase
Syntax

CopyToDatabase(<Server>,<Database>)

Input
(Text)
1. Parameter: Name of desitnation server
2. Parameter: Name of desitnation database

Output

None

Function

Copies current active document to another database. This database can be present on the
current server or another server. Destination server and database must be supplied.
Use the methods ServerName and Databasename to get the names of the current server
and database.

Example

ax2ln.SearchFirst();

while StrLen(ax2ln.GetNotesText)>2

{

 ax2ln.CopyToDatabase('Local',DataBaseName());

 ax2ln.SearchNext();

}

Error codes

"0": No active document
"1": Failed To Open Database
"2": Failed to copy active document to database
“3”: Error writing file to disk
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

 45

CreateLinkFile
Syntax

CreateLinkFile(<filename.url>))

Input
(Text)
1. Parameter: Filename on file to be created with Lotus Notes link-information
 (must have the extension ’.url’).

Output

None

Function

Creates a file with filename as supplied in parameter. The file contains link-information on
the current selected document in Lotus Notes.
By double-clicking this file in Windows, the Lotus Notes client is launched and the document
is opened.

Example

ax2ln.GetUnique('Nummer',’123’);

ax2ln.CreateLinkFile(‘c:\shortcut.url’);

Error codes

"1": Document not selected
"2": No filename supplied
“3”: Error writing file to disk
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

46

CreateNew
Syntax

CreateNew([“NoCommit”])

Input
([Text])
optional parameter: “NoCommit” Specifies, that an empty document should not be created.

Output

None

Function

Creates a new empty document.
Fill in values by SetFieldValue and save the document by Commit. The document is creat-
ed with the current form (Form). If the form type in Notes is a "response-to-response docu-
ment", the new form will be created as a Response document to the current document.
Similarly, a "Response document" will be created as a Response document to the main
document.
Note that the new document is automatically committed by this command. Thus an empty
Notes document is saved initially, unless the optional parameter “NOCOMMIT” is supplied.

Example

ax2ln.CreateNew();

ax2ln.SetFieldValue('Number',"125");

ax2ln.Commit();

Error codes

"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.1

Other references

Form
FormName
SetFieldValue
Commit

 47

DatabaseName
Syntax

DatabaseName()

Input

None

Output
(Text: Direct)
Filename for current Notes database

Function

Returns the current database filename that has been set by Logon or OpenDialog.

Example

PRINT "Current database: ",ax2ln.DatabaseName();

PAUSE;

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.3.1

Other references

Logon
OpenDialog

48

DatabaseReplicaId
Syntax

DatabaseReplicaId()

Input

None

Output
(Text: Direct)
Replica ID of current database.

Function

Returns the 16 character replica id of the current database

Example

info(StrFmt("Database: %1 ",ax.Databasename()));

info(StrFmt("ReplicaID: %1",ax.DatabaseReplicaId()));

Error codes

"2": Database not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Error codes

"2": Database not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

DatabaseName

 49

DatabaseTitle
Syntax

DatabaseTitle()

Input

None

Output
(Text: Direct)
Title on current database.

Function

Returns the current database title, which should not be confused with the database name
that specifies the file name of the database.
Can only be used after use of Logon.

Example

ax2ln.Logon('help4.nsf');

print "Database file...: ",ax2ln.DatabaseName();

print "Database title..: ",ax2ln.DatabaseTitle();

pause;

Error codes

"2": Database not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Error codes

"2": Database not selected

Section

3.3.1

Other references

DatabaseName

50

Debug
Syntax

Debug(<Debug>)

Input
(Boolean)
Activation (TRUE) or deactivation (FALSE) of the debug-system.

Output

None

Function

Activates a function by which all calls to the DLL are shown in Windows. In addition, further
information will often be shown if the DLL function is complex.

Example

ax2ln.Debug(TRUE);

ax2ln.Query('Form="Memo"');

ax2ln.Debug(FALSE);

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.10.2

Other references

SetLog

 51

DeleteAttachAll
Syntax

DeleteAttachAll()

Input

None

Output

None

Function

Removes all attachments on the current document.
If the attachment is created by the user in a rich-text field, the icon of the attachment will not
be deleted. The actual attachment will be deleted though.

Example

ax2ln.GetUnique("Number","123");

ax2ln.DeleteAttachAll(); //Remove old

ax2ln.AttachFile("c:\\autoexec.bat","Startup");

Error codes

"2": Form not selected, use method Form
"3": Document not selected
 "99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.7

Other references

DetachFile
AttachFile

52

DeleteAttachment
Syntax

DeleteAttachment[<Attachment Name>]

Input
(Text)
Optional name on attachment.

Output

None

Function

Deletes an attachment in the current Notes document. Note that it is the attachment-name
that is specified.
If the attachment is created by the user in a rich-text field, the icon of the attachment will not
be deleted. The actual attachment will be deleted though.

Example

ax2ln.GetUnique('Number',"123");

ax2ln.DeleteAttachment('Startup'); // Remove old

ax2ln.AttachFile('c:\\autoexec.bat',"Startup");

Error codes

"1": Attachment not found on current document
"2": Form not selected, use method Form
"3": Document not selected
"98": Attachment name is missing
 "99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.7

Other references

DetachFile
AttachFile

 53

DeleteCurrent
Syntax

DeleteCurrent()

Input

None

Output

None

Function

Deletes current document.

Example

ax2ln.Form('Department');

ax2ln.getUnique('Number',"125");

ax2ln.DeleteCurrent();

Error codes

"1": No document selected
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.3

Other references

DeleteID
Commit

54

DeleteID
Syntax

DeleteID(<DocID>)

Input
(Text)
Unique DocId on Notes document to be deleted.

Output

None

Function

Deletes a document by selecting a document ID. Document ID may e.g. be retrieved by
Query, or by storing DocId in an AX table field.

Example

while select CustTable

where (CustTable.DeleteMark == 1)

{

 ax2ln.DeleteID(CustTable.NotesDocID);

 CustTable.Delete();

}

Error codes

"1": Error in DocId
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.3

Other references

SelectID
DeleteCurrent
Commit

 55

DeleteTmpFile
Syntax

DeleteTmpFile()

Input

None

Output

None

Function

Deletes temporary files used in connection with e.g. Query.

Example

...

ax2ln.SetTmpFileName();

ax2ln.query('');

...

ax2ln.DeleteTmpFile();

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Error codes

None

Section

3.3.3

Other references

SetTmpFileName
GetTmpFileName

56

DetachFile
Syntax

DetachFile(<Filename>[,<Attachment Name>])

Input
(Text, Text)
1. Parameter: Filename on file to be detached to
2. Parameter: Optional name of attachment to be detached. If no parameter is supplied, an
 attachment with the name of the first Parameter is detached.

Output

None

Function

Detaches an attachment specified in the second Parameter of the current document. If a
second Parameter is not specified, the attachment is selected with the same name as the
file name specified in the first Parameter.
Attachment is detached to the file specified in the first Parameter.

Example

ax2ln.AttachFile('c:\\original',"Temp");

ax2ln.DetachFile('c:\\copy_',"Temp");

ax2ln.DeleteAttachment("Temp");

Error codes

"1": Attachment not found on current document
"2": Form not selected, use method Form
"3": Document not selected
"98": Attachment name is missing
 "99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.7

Other references

AttachFile
DeleteAttachment

 57

DLLVersion
Syntax

DLLVersion()

Input

None

Output
(Text: Direct)
Version number and release date – e.g. "1.0.1.34 - 01.05.2003"

Function

Returns the current version number and release date of the Windows program library
(ERP2LN.DLL).

Example

print "DLL version: ",ax2ln.DLLVersion();

pause;

Section

3.3.2

58

DocID
Syntax

DocID()

Input

None

Output
(Text: Direct)
The Document ID on the current active document in Notes.

Function

Returns the DocId of the active document in Notes. A document can be made active by
GetUnique, SelectID and QueryUnique (among others).
Can be used for checking whether a document is active before it is processed.

Example

if (StrLen(ax2ln.DocID())>2)

 ax2ln.SetFieldValue('Number',"1234");

Error codes

”0”; Document with this DocId not found
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.5

Other references

UNID

 59

ExistsAttach
Syntax

ExistsAttach(<Attachment name>)

Input
(Text)
The name on attachment to be looked for in the current document.

Output
(Boolean: Direct)
FALSE: Either an attachment with that name exists on the current
 Document or an error has occurred (check with
 GetNotesText)
TRUE: Attachment is present on current document

Function

Is used to check if an attachment with the specified name exists in the selected document.

Example

ax2ln.SelectID("000013E0");

if (ax2ln.ExistsAttach('config.sys'))

 ax2ln.DetachFile('config.sys');

Error codes

"2": Form not selected, use method Form
"3": No document selected
"98": Attachment name is missing
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.7

Other references

AttachFile
DetachFile
DeleteAttachment

60

ExistsDatabase
Syntax

ExistsDatabase(<full path to Lotus Notes Database>)

Input
(Text)
Path and name on database to be checked for existence.

Output
(Boolean: Direct)
FALSE: Database can not be found on slected server (or an error has occurred -
 use GetNotesText)
TRUE: Database exists on server.

Funktion

Used to check if a database is present on the selected server.

Eksempel

ax2ln.Init();

ax2ln.OpenServer(‘acme/com’);

if(ax2ln.ExistsDatabase(‘customer\custtable.nsf’)) {

 // Database is found

 ax2ln.Logon(‘customer\custtable.nsf’);

 ..

} else {

 // Database does not exist!

 ..

}

Fejlkoder

"2": Server not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Afsnit

3.9.1

Se også

OpenServer
Logon
ExistsField
ExistsForm
ExistsView

 61

ExistsField
Syntax

ExistsField (<Fieldname>)

Input
(Text)
Name on Notes field to be checked for existence.

Output
(Boolean: Direct)
FALSE: Either the field with that name exists on the current Form
 or an error has occurred (check with GetNotesText)
TRUE: Field is present on current form

Function

Is used for checking whether a field with the specified name exists in the current form. The
field need not necessarily exist in the current document, only in the design of the form. Thus
selection of a current document is not required to be able to use the method. However, it
must be specified which form is being used (method Form).

Example

ax2ln.SelectID("000013E0");

if (ax2ln.ExistsField('Number'))

 ax2ln.SetFieldValue('Number',"22");

Error codes

"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.1

Other references

ExistsForm
ExistsView
FirstField

62

ExistsForm
Syntax

ExistsForm(<Form name>)

Input
(Text)
Name on Notes form to be checked for existence. Aliases for form can also be used.

Output
(Boolean: Direct)
FALSE: Either the form with that name or aliases exists in the current Database or an
 error has occurred (check with GetNotesText)
TRUE: Form is present in the current database

Function

Is used for checking whether a form with the specified name exists in the current database.
Selection of database must take place before the method is called (use Logon).
If the form is defined with aliases, calling this method with one of these aliases will also re-
turn TRUE.

Example

if (ax2ln.ExistsForm('Demo'))

 ax2ln.Form('Demo');

else

 print "The form 'Demo' is not available";

pause;

Error codes

"2": No logon to database performed
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.1

Other references

ExistsField
ExistsView
FirstForm

 63

ExistsView
Syntax

ExistsView(<View name>)

Input
(Text)
Name on Notes form to be checked for existence. Aliases for view can also be used.

Output
(Boolean: Direct)
FALSE: Either the view with that name or alias exists in the current Database or an
 error has occurred (check with GetNotesText)
TRUE: View is present in the current database

Function

Is used for checking whether a view with the specified name exists in the current database.
Selection of database must take place before the method is called (use Logon).

Example

if (ax2ln.ExistsView('All'))

 ax2ln.View("All");

else

 print "The view 'All' must exist in Notes";

pause;

Error codes

"2": No logon to database performed
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.1

Other references

ExistsField
ExistsForm
FirstView

64

FieldType
Syntax

FieldType(<Fieldname>)

Input
(Text)
Specification of fieldname

Output
(Text: Direct)
Type of field in Notes. Could also specify an error code.

Function

Is used to read the field-type the field is in Lotus Notes, e.g. Rich-text or Number. For a
complete list of field types that can be returned, see Appendix 4
If no Parameters are specified, current field is used.
Form must be selected by Form before use of the method.

Example

ax2ln.Form('Test');

ax2ln.GetUnique('Nummer',"SALES");

if (ax2ln.FieldType('Date')=='DateTime')

 ax2ln.SetFieldValue('Date',

 Date2Str(Today(),123,2,3,2,3,2));

Error codes

"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.3

Other references

FormType

 65

FirstAttach
Syntax

FirstAttach()

Input

None

Output
(Text: Direct)
Name of the first attachment on the current document.

Function

Points to the first attachment attached to the current document and returns the name of this
attachment.
This method is useful in combination with NextAttach when detaching all the attachments
on a document.

Example

attach=ax2ln.FirstAttach();

while (StrLen(attach)>2)

{

 print 'Found attach: ',attach;

 ax2ln.DetachFile('c:\\temp\\'+attach,attach);

 attach=ax2ln.NextAttach();

}

Error codes

"": No attachments on current document
"2": Form not selected, use method Form
"3": No document selected
"98": Attachment name is missing
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.3

Other references

NextAttach

66

FirstField
Syntax

FirstField()

Input

None

Output
(Text: Direct)
Name of the first field on the current form design.

Function

Points to the first field defined in the form (not the current form but the design) and return the
name of the field.
This method is useful in combination with NextField when reading the fieldnames on a Lo-
tus Notes form.

Example

f = ax2ln.FirstField();

while (f != ’’)

{

 print f;

 F = ax2ln.NextField();

}

Error codes

"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.2

Other references

NextField
FirstForm
FirstView

 67

FirstForm
Syntax

FirstForm()

Input

None

Output
(Text: Direct)
Name of the first form in the current selected database.

Function

Selects the first form in the current database and returns the name of the form.
Names of both ordinary forms and subforms are returned.

Before use, database must have been selected by Logon.

Example

f = ax2ln.FirstForm();

while (f != '')

{

 print f;

 f = ax2ln.NextForm();

}

Error codes

"2": No logon to database performed.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.2

Other references

NextForm
FirstField
FirstView

68

FirstView
Syntax

FirstView()

Input

None

Output
(Text: Direct)
Name of the first view in the current selected database.

Function

Selects the first view in the current database and returns the name of this view.
Before use, database must have been selected by Logon.

Example

v = ax2ln.FirstView();

while (f != '')

{

 print v;

 v = ax2ln.NextView();

}

Error codes

"2": No logon to database performed.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.2

Other references

NextView
FirstField
FirstForm

 69

Form
Syntax

Form(<Form name>)

Input
(Text)
Name of form in Lotus Notes to use. Aliases can be used.

Output

None

Function

Specification of form to be used for operations in Notes – e.g. data-validation. It is also pos-
sible to use form aliases.

Example

ax2ln.Form('Person');

ax2ln.QueryUnique("Name=’John Williamson ");

Error codes

"1": Form not found in current database.
"9": Logon to database is missing
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.2.3

Other references

FormName

70

FormName
Syntax

FormName()

Input

None

Output
(Text: Direct)
Name on current form in Notes.

Function

Is used to read which form is open in the current session of Lotus Notes.

Example

if (ax2ln.FormName() != 'Department')

 print "Form not correct";

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.3.1

Other references

FormName

 71

FormType
Syntax

FormType()

Input

None

Output
(Text: Direct)
Type of form on current form. Could also return an error code.

Function

Is used to read of which type the current form is in Notes.
The following types can be returned:
"Main"
"Response to Main"
"Response to Response"
Form must have been selected by the method Form before use of this method.
Note that any error codes may be returned. It is suggested that the length of return value is
tested.

Example

ax2ln.Form('Test');

print "Formtype: ",ax2ln.FormType();

Error codes

"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.3

Other references

Form

72

GetDialogDatabaseName
Syntax

GetDialogDatabaseName()

Input

None

Output
(Text: Direct)

Database selected at last call to OpenDialog.

Function

Returns the database name of the database selected at last call to OpenDialog. Can be
used, when OpenDialog is not called with the OPEN parameter to examine the selected
data.

Example

ax2ln.OpenDialog(); // Used to select DB

ax2ln.OpenServer('DefaultServer/Acme');

ax2ln.Logon(ax2ln.GetDialogDatabaseName());

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.2.1

Other references

OpenDialog

 73

GetDialogServerName
Syntax

GetDialogServerName()

Input

None

Output
(Text: Direct)

Server selected at last call to OpenDialog.

Function

Returns the server name of the database selected at last call to OpenDialog. Can be used,
when OpenDialog is not called with the OPEN parameter to examine the selected data.

Example

ax2ln.OpenDialog(); // Used to select server

ax2ln.OpenServer(ax2ln.GetDialogServerName());

ax2ln.Logon(FixedDatabase);

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.2.1

Other references

OpenDialog

74

GetDocInfo
Syntax

GetDocInfo(<PROPERTY>)

Input
(Text)
The type of information (property) wanted

Output
(String: Direct)
Property value

Function

Is used for searching for information about the current document. The following information
is available:
"DOCID" The DocId of the current document
"UNID" UNID
"ATTACH_COUNT" The number of attachments
"CREATED" The creation date
"LAST_MODIFIED" The last modification
"LAST_ACCESSED" The last time the document was accessed
"ADDED" Added to this replica
"IS_RESPONSE" Response document ("0": No,"1": Yes)

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Example

ax2ln.SearchFirst();

print "Last modified: ",ax2ln.GetDocInfo(’LAST_MODIFIED’);

pause;

Section

3.5.5

Other references

GetItemInfo

 75

GetFieldLength
Syntax

GetFieldLength(<Fieldname>)

Input
(Text)
Notes field name.

Output
(Integer: Direct)
>=0: Number of characters in field
<0: Error, see below

Function

Returns the size of data in supplied field. It is the length in characters returned – not the size
in bytes.

Error codes

”-1”: Field supplied or not found on current form
”-2”: Form not selected
”-3”: Field length exceeded
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.5

Other references

GetItemInfo

76

GetFieldValue
Syntax

GetFieldValue(<Fieldname>)

Input
(Text)
Specification of the name of the item in Notes whose value should be read.

Output
(Text: Direct)
Item value

Function

Query for item value in the current document. The document must be selected before the
query. Unlike what happens when QueryField is used, it will not be checked if the item also
exists as a field on the current form.

Example

ax2ln.GetUnique("Number","123");

print "Name : ",ax2ln.GetFieldValue("Name");

print "Ref : ",ax2ln.GetFieldValue("Ref");

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.5

Other references

PutFieldValue
QueryField

 77

GetFoundDocs
Syntax

GetFoundDocs()

Input

None

Output
(Number: Direct)

Number of documents found in last search (Query)

Function

Returns the number of documents found at last call to Query.

Example

ax2ln.Query("@all");

print "Found documents: ", ax2ln.GetFoundDocs();

pause;

Error codes

-2: Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.2

Other references

Query

78

GetHandle
Syntax

GetHandle()

Input

None

Output
(Number)
The handle number of the current session.

Function

Returns the handle number of the current session. This is relevant if SetHandle is used to
switch between sessions.

Example

if (ax2ln.GetHandle() != 2)

{

 ax2ln.SetHandle(2);

 ax2ln.OpenServer("Local");

 ax2ln.Logon("MyDB.nsf");

 ax2ln.Form("Form 2");

 ax2ln.View("View 2");

}

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.4

Other references

SetHandle

 79

GetItemInfo
Syntax

GetItemInfo()

Input
(Text, Text)
1st parameter: The name of the Notes field in which to search
2nd parameter: Property searched for

Output
(String: Direct)
Property value

Function

Used for searching for information about a specific item (specific data) in the current docu-
ment. The following information is available:
"TYPE" : Data type (TEXT, NUMBER, DATETIME...)
"LENGTH" : Length of the data in bytes

Error codes

”1” Field is not defined on Notes form
”2”: Form not selected, use method Form
”3”: Internal format-error (field and flag must be separated with ”@@@”)

Section

3.5.5

Other references

GetDocInfo

80

GetLink
Syntax

GetLink()

Input

None

Output
(Text: Direct)
Link to current document.

Function

This method returns a notes-link to the current selected document in Lotus Notes. This link
is unique across databases, servers and replicas.

The link is build like this:

“notes://<server>/<database_replicaid/<view_unid>/<document unid>”

Example

ax2ln.SearchFirst();

print "link: ",ax2ln.GetLink();

Error codes

“”: Server, view or document not selected.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

MailGetLink

 81

GetMessages
Syntax

GetMessages()

Input

None

Output
(String: Direct)
FALSE: Error messages will not be shown.
TRUE: Error messages will be shown.

Function

Returns status specifying whether error messages are shown in separate window’s when an
error occurs when integrating AX and Notes.
See Messages for a more detailed description.

Section

3.10.1

Other references

Messages

82

GetNotesText
Syntax

GetNotesText()

Input

None

Output
(Text: Direct)
Returns the resultcode/errorcode from last call to DLL.

Function

After each call to the DLL a result-code is returned to AX – including error-codes. This meth-
od returns this value.
Use GetNotesText to implement error-handling.

Example

ax2ln.form('Test');

if (ax2ln.GetNotesText() != '')

{

 print "Error opening 'Test'";

 pause;

 return;

}

Section

-

Other references

-

 83

GetRichSepMode
Syntax

GetRichSepMode()

Input

None

Output
(String: Direct)
FALSE: Rich-text fields is stored in main comma file
TRUE: Rich-text fields is stored in separate comma files

Function

Returns status specifying how rich-text files are returned upon Query. See under
SetRichSepMode and section 3.6.2.1

Section

3.6.2.1

Other references

SetRichSepMode

84

GetTmpFileName
Syntax

GetTmpFileName()

Input

None

Output
(String: Direct)
Name of the current temporary file.

Function

Returns the name of the current temporary file.

Section

3.3.3

Other references

SetTmpFileName

 85

GetUnique
Syntax

GetUnique(<Fieldname>,<Fieldvalue>)

Input
(Text, Text)
1. Parameter: Name on lookup field in Notes.
2. Parameter: Lookup value to be searched for.

Output
(Text)
DocId on the found document.
If return value is “99” or less, then this specifies an error code.

Function

This method is used for finding a document in Notes via a key. The key field is specified as
first Parameter. A query is made in Lotus Notes for a document that has the second Param-
eter value in its field.
The method returns an error if the query finds more documents.
If there is a possibility that the query will result in the finding of more documents, the method
Query should be used.
Remember that Notes is case-sensitive as regards field names.

Example

res = ax2ln.GetUnique('Number',Number);

if (strLen(res) > 2) // Found

{

 print "Notes Ref: ", ax2ln.QueryField("Ref");

 pause;

}

Error codes

"0": Document not found
"1": Field is not defined on Notes form
"2": Form not selected, use method Form
"3": More than 1 document found
"4": Wrong number of arguments (should be 2)
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.6

Other references

SelectID
Query
QueryUnique

86

ImportFile
Syntax

ImportFile(<Fieldname>,<Filename>)

Input
(Text, Text)
1. Parameter: Name for rich-text field
2. Parameter: Filename to imported from

Output

None

Function

Imports the file specified in the second Parameter to the rich-text field specified in the first
Parameter. Is used for embedding graphics and rich-text. Can be combined with
SetRichFieldValue for "ordinary" body text.
The specified file is added to the existing contents in the rich-text field.
Note that some of the graphics formats supported have some variants that are not all sup-
ported by the integration kit. It is recommended to test the compatibility of existing graphics
programs by sending a mail to one's own address.

Example

ax2ln.SetRichFieldValue('Body','Rich text fil:');

ax2ln.ImportFile('Body','c:\\temp\\fil.rtf');

ax2ln.SetRichFieldValue('body','------------');

ax2ln.Commit();

Error codes

"1": Field is not defined on Notes form
"2": Form not selected, use method Form
"3": The field is not a rich-text field
”4”: Current document not selected
"98": File not found or cannot be read.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.2

Other references

SetRichFieldValue
MailBodyFile

 87

Init
Syntax

Init[(<DLL fil>)]

Input
(Text)
Optional filename on DLL file.

Output

None

Function

Creation of link to the Windows program library that handles communication to Lotus Notes.
This method must be called to be able to use the integration methods.
It is possible to specify another name of the DLL program library. If no Parameter is speci-
fied, the default value "ERP2LN.DLL" is used.

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.1

Other references

DLLVersion

88

IsDemoVersion
Syntax

IsDemoVersion()

Input

None

Output
(Boolean: Direct)
FALSE: NOT a demo version of DLL
TRUE: DLL IS a demo version

Function

Tells whether the current integration DLL is a demo version (not slized with production serial
number).

Section

3.3.2

Other references

DLLVersion
Show

 89

Logon
Syntax

Logon(<Database name>[,<Force logon>])

Input
(Text [,Boolean])
1. Parameter: Filename on Notes database.
2. Parameter: Optional specification that logon should be per formed even if a logon
 to current database has been carried out.

Output

None

Function

Opens a session with Lotus Notes upon specification of a database name. On login Lotus
Notes checks the rights of the user. The current set-up of the workstation (user ID, location
etc.) is used when creating the link. When contact to a Notes server is established for the
first time, the user's password is requested – unless the Notes client has been set up to
share password with other programs.
If the optional extra parameter (TRUE) is supplied, the logon is performed even if there al-
ready is an open connection to the database.
If this parameter is not supplied logon is only performed if the current database is different
from the supplied database.

Example

ax2ln.Init();

ax2ln.openServer('Local');

ax2ln.Logon('Department');

if (ax2ln.GetNotesText() != '')

 print 'Error connecting to Department on '+

 'local client';

Error codes

"9": Logon not completed because server name is missing.
 Use method OpenServer to supply server name.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.2.2

Other references

DatabaseName

90

LookupName
Syntax

LookupName(Server,Views,Names,Items)

Input
(Text)
1. Parameter: Server where names.nsf is located.
2. Parameter: List of names to search for.
3. Parameter: views to search in address book.
4. Parameter: Items to return.

Output

Itemsvalues for found document

Function

Make a lookup in e.g. the name and address book for a specific name.
Returns information from the fieldnames given in parameter 4.
Use '' as servername (parameter 1) is blank ('') the local PC will be used.
Normally '' is used as view (parameter 2) as the default lookup view will then be used ($Us-
ers).
Serveral names can be supplied as parameter 3. They must be seperated by @@@
(e.g. 'john@@@johnny').
Similar several items can be returned. Also use @@@ as delimiter.

If more documents are found, they will be returned seperated by @@@. The individual
items returned are seperated by ###.
The function always return the used view as first item and the matchup value as the second
part.

Example

ax2ln.openServer('Local');

Print ax2ln.LookupName('','','John', 'FullName@@@MailAddress')

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

 91

MailActiveDocument
Syntax

MailActiveDocument()

Input

None

Output
(Text)
Document UNID on active mail-document.

Function

Returns UNID on the document the user has currently open in the Lotus Notes client. If the
Lotus Notes client is not open or the user has no open document an empty string is re-
turned.
This methods differs from UNID, in that UNID returns the current selected document by the
integration kit (AX), not (necessarily) the document open in the Lotus Notes client.

Example

ax2ln.MailSetSendTo("johndoe@acme.com");

ax2ln.MailSetSubject('Dear John');

ax2ln.MailComposeOLE(FALSE);

print ax2ln.MailActiveDocument();

Error codes

””: No active document

Other references

MailComposeOLE
UNID

92

MailAttachFile
Syntax

MailAttachFile(<Filename>[,<AttachmentName>])

Input
(Text, Text)
1. Parameter: Filename on file to be attached current mail.
2. Parameter: Optional name of attachment on mail.

Output

None

Function

Attaches the file specified in the first Parameter of the current mail (note that the file is not
attached to a specific rich-text field, only to the actual document).
The attachment will appear at the bottom of the Notes document with its file name. If anoth-
er Parameter is specified, the attachment will get this name in the Notes mail. This option
may e.g. be used for a more descriptive name.

Example

ax2ln.MailPrepare('nn@acme.com',"Testmail");

ax2ln.MailSetBodyText(Have a look');

ax2ln.MailAttachFile('c:\\joke.bmp','Funny');

ax2ln.MailSend ();

Error codes

"2": Form not selected, use method Form
”3”: No document selected.
"98": File not found or cannot be read.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.8.2

Other references

AttachFile
MailBodyFile

 93

MailComposeOLE
Syntax

MailComposeOLE([<Backend dokument>])

Input
([Boolean])
Optional indication whether a backend document should be created.
FALSE: Do NOT create a new document (default)
TRUE: Create a new document

Output
(Text)
Document UNID on mail-document or error code.

Function

Opens a new mail in the Lotus Notes mail client with the data set from the other mail-
methods (e.g. MailPrepare).
If TRUE is supplied as parameter, a new document will be created in Lotus Notes. This doc-
ument can then be modified with the methods in the integration kit.
If no parameter is supplied (or FALSE is used), no document is created in the mail database,
only a “front-end” mail will be prepared.
If one or more attachments have been created on the current mail, a back-end document is
always created (to store the attachments).

This method returns to AX instantly – there will be no check whether the mail is sent or not. If
a backend document has been created the UNID is returned.

Example

ax2ln.MailPrepare('nn@acme.com',"Testmail");

ax2ln.MailSetBodyText('AX mail');

ax2ln.MailComposeOLE();

Error codes

 "": Mail document not found or created
"1": Error activating mail-client
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.8.4

Other references

MailPrepare

94

MailCreateLinkFile
Syntax

MailCreateLinkFile()

Input
(Text)
1. Parameter: Filename on file to be created with Lotus Notes link-information
 (must have the extension ’.url’).

Output

None

Function

Works as CreateLinkFile, although with this method the file contains a link to a sent mail.
The method is typically called right after MailComposeOLE or MailSend.

Other references

CreateLinkFile
MailGetLink
MailComposeOLE
MailSend

 95

MailGetDB
Syntax

MailGetDB()

Input

None

Output
(Text)
Path to mail database, as entered in notes.ini.

Function

Returns the name of the current mail database. This information is fetched in notes.ini.

Example

ax2ln.init();

print ax2ln.MailGetDB();

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

MailSetDB

96

MailGetHandle
Syntax

MailGetHandle()

Input

None

Output
(Integer: Direct)
Number of handle used for mails

Function

Several connections can be open at any time to Lotus Notes. A special handle is used for
mail-connection. This handle is identical to the maximum number of open handles.
Normally this is 16

Error codes

Other references

GetHandle
SetHandle

 97

MailGetLastUNID
Syntax

MailGetLastUNID()

Input

None

Output
(Text: Direct)
Notes Universal Document Id of the last sent mail-document in Notes.

Function

Returns the Notes Universal Document Id of the last sent mail document in Notes. The
Notes Universal Document Id is a 32-character string which is unique in a database across
replicas.

This function can be used, for journaling mails sent by e.g. batch processes.

Error codes

“”: Server, view or document not selected.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

UNID

98

MailGetLink
Syntax

MailGetLink()

Input

None

Output
(Text: Direct)
Link to current mail-document.

Function

This method returns a notes-link to the current prepared or sent mail in Lotus Notes. This
link is unique across databases, servers and replicas.

The link is build like this:

“notes://<server>/<database_replicaid/<view_unid>/<document unid>”

Error codes

“”: Server, view or document not selected.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

GetLink
MailCreateLink

 99

MailGetServer
Syntax

MailGetServer()

Input

None

Output
(Text, Direct)
Name of mail-server

Function

Returns the name of the server processing mails. Information is fetched from notes.ini

Example

ax2ln.init();

print ax2ln.MailGetServer();

Error codes

"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

MailSetServer

100

MailGetUsername
Syntax

MailGetUsername()

Input

None

Output
(Text, Direct)
The Lotus Notes user name for the current user.

Function

Returns a fully qualified Lotus Notes user name, e.g.: ”CN=John Smith/O=Intoint”.

Example

userName = ax2ln.MailGetUsername();

ax2ln.SetFieldValue("Principal",userName);

ax2ln.Commit();

 101

MailPrepare
Syntax

MailPrepare(<SendTo>,<Subject>[,<CC>)[,<BCC>]])

Input
(Text, Text[, Text[, Text]])

1. Parameter: E-mail address of receiver(s).
2. Parameter: Subject on mail.
3. Parameter: Optional. CC(s) of mail.
4. Parameter: Optional. BCC(s) of mail.

Output

None

Function

Prepares the mail for sending. This method initializes the mail, and the contents are subse-
quently filled in with the methods MailBodyXXX. Note that the third and fourth parameters
are optional.
E-mail addresses (also CC and BCC) can be separated by commas to specify more receiv-
ers of the mail.

Example

ax2ln.MailPrepare ('nn@acme.com,nn@acme.com',

 'Test','','John Doe/Acme');

ax2ln.MailSetBodyText("What’s up?");

ax2ln.MailSend();

Section

3.8.1, 3.8.2

Other references

MailBody
MailBodyText
MailBodyFile
MailSend

102

MailSend
Syntax

MailSend([<Filename>])

Input
(Text)
Optional filename to be imported into the body field in mail.

Output

None

Function

Sends prepared mail. If a file name is specified, the file is imported at the end of the body
text field of the mail, even if this field has been originally built with the method MailSetBody
or MailSetBodyText.

Example

ax2ln.MailPrepare ('nn@acme.com','My config.sys');

ax2ln.MailSend('c:\\config.sys');

Error codes

"1": Mail not prepared (e.g. SendTo missing)
"98": File not found or cannot be read.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.8.3

Other references

MailPrepare
MailBodyFile

 103

MailSendDocument
Syntax

MailSendDocument([<Filename>])

Input

None

Output

None

Function

Sends the current active document.
Any document in Lotus Notes can be send as mail. This method sends the current active
docuemnt. Remember to either call MailSetSendTo or enter a value in a SendTo field on the
document befor calling command.

Example

ax2ln.SelectID('123456');

ax2ln.MailSetSendTo('johndoe@acme.com');

ax2ln.MailSendDocument();

Error codes

"1": Mail not prepared (e.g. SendTo missing)
"98": File not found or cannot be read.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.8.3

Other references

MailSend

104

MailSendFrom
Syntax

MailSendFrom(<SendFrom>)

Input
(Text)
Specification of name of sender of mail (SendFrom).

Output

None

Function

Supplies mail-addresses to the sender of the mail.
If not set the mail will be stamped with the current users mail address.

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSendFrom('"john Doe" <jd@acme.com>');

ax2ln.MailSend();

Other references

MailPrepare

 105

MailSetBCC
Syntax

MailSetBCC(<BCC>)

Input
(Text)
Specification of BCC on mail

Output

None

Function

Supplies mail-addresses to the BCC field on new mail
BCC can also be supplied as parameter when calling MailPrepare

Example

ax2ln.MailPrepare ('nn@acme.com','Testmail');

ax2ln.MailSetBCC('abc@ef.gh');

ax2ln.MailSetBody('My mail');

ax2ln.MailSend ();

Section

3.8.1

Other references

MailPrepare
MailSetCC
MailSetSendTo

106

MailSetBody
Syntax

MailSetBody(<Text>)

Input
(Text)
Body-text for mail

Output

None

Function

Adds text to mail in the body field. By repeated calls of this method, more lines are built up.
This method must be used when importing other file formats with the method Mail-

BodyFile.

Corresponds to MailBodyText with regard to functions but is slightly slower as all text is
transferred via temporary file.

Example

ax2ln.MailPrepare ('nn@acme.com','Testmail');

ax2ln.MailSetBody('First line');

ax2ln.MailSetBody('Second line');

ax2ln.MailSend();

Error codes

”1”: Error opening mail-server and/or mail-database
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.8.2

Other references

MailBodyText
MailBodyFile

 107

MailSetBodyFile
Syntax

MailSetBodyFile(<Filename>)

Input
(Text)
Name of file to be imported in to current mail.

Output

None

Function

Imports file to the current mail. Is used for embedding graphics and rich-text. Is combined
with MailBody for "ordinary" body text.
See Section 3.8.2 for more detailed information about use of this method.
Note that some of the graphics formats supported have some variants that are not all supported by the
integration kit. It is recommended to test the compatibility of existing graphics programs sending a
mail to one's own address.

Example

ax2ln.MailPrepare('nn@acme.com','Testmail');

ax2ln.MailSetBody('Rich text file:');

ax2ln.MailSetBodyFile('c:\\temp\\fil.rtf');

ax2ln.MailSetBodyFile('c:\\temp\\sign.pcx');

ax2ln.MailSend();

Error codes

"98": Error writing to temporary file
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.8.2

Other references

MailBody
MailSend

108

MailSetBodyText
Syntax

MailBodyText(<Text>)

Input
(Text)
Body text for mail

Output

None

Function

Adds text to mail in the body field. By repeated calls of the method, more lines are built up.
This method is used when importing of other file formats with the method Mail-

BodyFile is NOT wanted.
Corresponds to MailBodyText with regard to functions but is quicker as all transfer to Notes
happens directly.

Example

ax2ln.MailPrepare("nn@acme.com","Testmail");

ax2ln.MailSetBodyText("First line");

ax2ln.MailSetBodyText("Second line");

ax2ln.MailSend();

Error codes

 "1": Can not be combined with MailBody or MailBodyFile in the same mail
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.8.2

Other references

MailBodyText
MailBodyFile
MailSend

 109

MailSetCC
Syntax

MailSetCC(<CC>)

Input
(Text)
Specification of CC on new mail

Output

None

Function

Supplies mail-addresses to the CC field on new mail.
CC can also be supplied as parameter when calling MailPrepare

Example

ax2ln.MailPrepare('nn@acme.com','Testmail');

ax2ln.MailSetCC('abc@ef.gh');

ax2ln.MailSetBody('My mail');

ax2ln.MailSend();

Section

3.8.1

Other references

MailPrepare
MailSetBCC
MailSetSendTo

110

MailSetCopyDB
Syntax

MailSetCopyDB(<CC>)

Input
(Text)
Maildatabase to copy outgoing mails to

Output

None

Function

Defines a database, where a copy of outgoing mails should be copied to, when sending
mails.

Example

ax2ln.init();

ax2ln.MailSetCopyDB('mail\\CommonMails.nsf');

ax2ln.MailPrepare('nn@acme.com', 'Test mail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSend();

Other references

CopyToDatabase
MailSetCopyToUser

 111

MailSetCopyToUser
Syntax

MailSetCopyToUser (<doCopy>)

Input
(Boolean)
FALSE: Don’t perform any copying
TRUE: Copy outgoing mails to current users mailbox

Output

None

Function

If outgoing mails has been set up to be send though a different mail-database, using the
method MailSetDB, this command can specify, that a copy of the outgoing mail should also
be copied to the current users normal mail-database.
Same as MailSetCopyDB, but with no need to specify the database, as the current users
database are known to the system.

Example

ax2ln.MailPrepare('nn@acme.com','Testmail from other mail DB');

ax2ln. MailSetDB('anothermailDB.nsf');

ax2ln.MailSendFrom('sales@intoint.com');

ax2ln.MailSetCopyToUser(true);

ax2ln.MailSend();

Other references

MailSetDB
MailSetCopyDB

112

MailSetDB
Syntax

MailSetDB(<mail-database>)

Input
(Text)
1. parameter: Name of mail-database

Output

None

Function

Enables the temporary selection of an alternative mail-database. This selection will not be
entered into notes.ini.

Example

ax2ln.init();

ax2ln.MailSetDB(’mail\alternative.nsf’);

ax2ln.MailSendFrom('sales@intoint.com');

ax2ln.MailSetReplyTo('info@intoint.com');

ax2ln.MailPrepare(’nn@acme.com’, ’Regarding…’);

ax2ln.MailSend();

Other references

MailGetDB

 113

MailSetDeliveryPriority
Syntax

MailSetDeliveryPriority (<Priority>)

Input
(Number)
Specification of how soon Notes should route the mail

Output

None

Function

Corresponds to the “Delivery Priority” field on the Delivery Options in the Lotus Notes mail
application.
Possible values:
1: Low (Internally stores as “L”)
2: Medium (Internally stores as “M”)
3: High (Internally stores as “H”)

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSetDeliveryPriority(3);

ax2ln.MailSend();

Other references

MailSetImportance

114

MailSetDeliveryReport
Syntax

MailSetDeliveryReport(<Report level>)

Input
(Text)
Specification of which kinds of reports regarding mail-progress should be returned

Output

None

Function

Corresponds to the “Delivery Report” field on the Delivery Options in the Lotus Notes mail
application.
Possible values:
“N”: None – no reports send – even if errors occur
“B”: Only on failure - only report if Notes cannot deliver the message
“C”: Confirm delivery – report when delivered (or not delivered)
“T”: Trace entire path – report from every mail-server mail passes.

The parameter value corresponds to how Lotus Notes internally saves this item.

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSetDeliveryReport(“C”);

ax2ln.MailSend();

Other references

MailSetImportance
MailSetReturnReceipt

 115

MailSetImportance
Syntax

MailSetImportance(<Importance-level>)

Input
(Number)
Importance of mail – from low to high (1-3)

Output

None

Function

Corresponds to the “Importance” field on the Delivery Options in the Lotus Notes mail appli-
cation. Setting this value to 3 (High) will result in an exclamation point next to the message in
the Inbox of recipients
Possible values:
1: High
2: Medium (Default)
3: Low
Not to be mixed up with MailSetDeliveryPriority that determines how fast the mail will be
sent.

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSetImportance(3);

ax2ln.MailSend();

Other references

MailSetDeliveryPriority

116

MailSetError
Syntax

MailSetError(<E-mail recepient>)

Input
(Text)
E-mail address on person to receive all DLL error messages.

Output

None

Function

It is possible to forward any error-message from the integration kit to one or more mail re-
ceivers. This is instantiated by calling this method.
Any error-message from the kit is then also sent as an e-mail.
This can ease support on systems running unattended and minimize down-time.

Example

ax2ln.Init();

ax2ln.MailSetError('John Doe/Acme');

Section

3.8.6

Other references

Messages

 117

MailSetEncrypt
Syntax

MailSetEncrypt(<Do encrypt>)

Input
(Boolean)

Output

None

Function

Corresponds to the “Encrypt” field on the Delivery Options in the Lotus Notes mail applica-
tion.
Specifies if mail should be encrypted (TRUE)

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSetEncrypt(TRUE);

ax2ln.MailSend();

Other references

118

MailSetMAPI
Syntax

MailSetMAPI(<MAPI>)

Input
(Boolean)
FALSE: Use Lotus Notes as e-mail system
TRUE: Use MAPI for e-mails

Output

None

Function

Specification of whether to use MAPI as mail-protocol or Lotus Notes. Use parameter TRUE
to switch to MAPI protocol.

Example

ax2ln.MailSetMAPI(True);

ax2ln.MailPrepare('intoint@intoint.com','Hello');

ax2ln.MailSend();

Section

3.8.5

Other references

MailSetMAPIPassword
MailSetMAPIProfile

 119

MailSetMAPIPassword
Syntax

MailMAPIPassword(<MAPI Password>)

Input
(Text)
Password to be used when logging in to MAPI

Output

None

Function

If the MAPI setup requires password when using MAPI, the password can be send through
this command.

Example

ax2ln.MailSetMAPI(TRUE);

ax2ln.MailSetMAPIProfile("MS Exchange Settings");

ax2ln.MailSetMAPIPassword("MyPassword");

Section

3.8.5

Other references

MailSetMAPI
MailSetMAPIProfile

120

MailSetMAPIProfile
Syntax

MailMAPIProfile(<MAPI Profile>)

Input
(Text)
Profile to be used when logging in to MAPI.

Output

None

Function

To avoid having to manually select a profile when starting e.g. MS Outlook, the profile can be
specified by MailSetMAPIProfile.

Example

ax2ln.MailSetMAPI(TRUE);

ax2ln.MailSetMAPIProfile("MS Exchange Settings");

ax2ln.MailSetMAPIPassword("MyPassword");

Section

3.8.5

Other references

MailSetMAPI
MailSetMAPIPassword

 121

MailSetReplyTo
Syntax

MailSetReplyTo(<ReplyTo>)

Input
(Text)
Specification of mailaddress where mails should be replied to.

Output

None

Function

Supplies ReplyTo-addresses to the sender of the mail.
If not set the mail will be stamped with the current users mail address.

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSetReplyTo('"john Doe" <jd@acme.com>');

ax2ln.MailSend();

Other references

MailPrepare
MailSendFrom

122

MailSetReturnReceipt
Syntax

MailSetReturnReceipt(<Do send returnn receipt>)

Input
(Boolean)
TRUE = Receive message when mail has been opened

Output

None

Function

Corresponds to the “Return Receipt” field on the Delivery Options in the Lotus Notes mail
application.
Possible values:
FALSE: Do not return a receipt (default)
TRUE: Do return a receipt when mail has been opened by recipient

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSetReturnReceipt(TRUE);

ax2ln.MailSend();

Other references

NotesMailSetDeliveryReport

 123

MailSetSave
Syntax

MailSetSave(<SAVE>)

Input
(Boolean)
FALSE: Do not save sent sent mail-documents
TRUE: Save sent mail-documents in "Sent"

Output

None

Function

Whether sent mails are saved or not are determined by the current user's Lotus Notes set-
up. With MailSetSave it is possible to manually decide whether sent mails should be saved
or not.

Example

ax2ln.init();

ax2ln.MailSetSave(TRUE);

ax2ln.MailPrepare(’nn@acme.com’, ’Regarding…’);

ax2ln.MailSend();

Other references

124

MailSetSendTo
Syntax

MailSetSendTo(<SendTo>)

Input
(Text)
Specification of receiver of mail (SendTo).

Output

None

Function

Supplies mail-addresses to the SendTo field on new mail. SendTo can also be supplied as
first parameter when calling MailPrepare

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSend();

Section

3.8.1

Other references

MailPrepare

 125

MailSetServer
Syntax

MailSetServer(<Server name>)

Input
(Text)
1. parameter: Name of mail-server.

Output

None

Function

This method enables temporary selection of an alternative mail-server. This selection will not
be entered into notes.ini. At next use of the mail-server from notes.ini will be used.

Example

ax2ln.init();

ax2ln.MailSetServer(’new_server/domain’);

ax2ln.MailPrepare(’nn@acme.com’, ’Regarding …’);

ax2ln.MailSend();

Other references

MailGetServer

126

MailSetSubject
Syntax

MailSetSubject(<Text>)

Input
(Text)
Specification of subject on new mail.

Output

None

Function

Supplies subject to the new mail. Subject can also be supplied as second parameter when
calling MailPrepare

Example

ax2ln.MailSetSendTo('nn@acme.com');

ax2ln.MailSetSubject('Testmail');

ax2ln.MailSetBody('My mail');

ax2ln.MailSend();

Section

3.8.1

Other references

MailPrepare

 127

Messages
Syntax

Messages(<ShowMessages>)

Input
(Text)
Specification of error-messages should be shown (TRUE) or not (FALSE).

Output

None

Function

This method makes it possible to "hide" error messages. This may be useful in connection
with e.g. batch updates etc. However, it requires that efficient test functions are built into the
AX code that read GetNotesText upon each method and reacts on error situations.
Parameter FALSE de-activates error messages. Parameter TRUE re-activates error mes-
sages.
Note that these settings are global to the entire AX session GetMessages can be used to read the
current value. The value should be reset to the original value after use.

Example

Saved = ax2ln.GetMessages;

ax2ln.Messages(FALSE);

ax2ln.SetFieldValue("Field","eee");

if (ax2ln.getNotesText()==’’)

{...}

ax2ln.Messages(Saved);

Section

3.10.1

Other references

GetMessages

128

MoveFirst
Syntax

MoveFirst()

Input

None

Output
(Text)
Notes Document ID of the found document or error code.

Function

Finds and selects the first document in the last query result (Query). Returns the docu-
ment’s DocId or alternatively an error code.

Example

ax2ln.Query('Name="A*"');

ax2ln.MoveFirst();

while (StrLen(ax2ln.GetNotesText)>2)

{

 count++;

 PRINT "Count: ",ax2ln.QueryField('Count');

 ax2ln.MoveNext;

}

Error codes

"0": No data in result-set
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.2

Other references

Query
MoveNext
MovePrev
MoveLast

 129

MoveLast
Syntax

MoveLast()

Input

None

Output
(Text)
Notes Document ID of the found document or error code.

Function

Finds and selects the last document in the last query result (Query). Returns the document’s
DocId or alternatively an error code.

Example

ax2ln.Query('Name="A*"');

ax2ln.MoveLast();

while (StrLen(ax2ln.GetNotesText())>2)

{

 count++;

 print "Count: ",ax2ln.QueryField('Count');

 ax2ln.MovePrev();

}

Error codes

"0": No data in result-set
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.2

Other references

Query
MoveNext
MovePrev
MoveFirst

130

MoveNext
Syntax

MoveNext()

Input

None

Output
(Text)
Notes Document ID of the found document or error code.

Function

Finds and selects the next document in the last query result (Query). Returns the docu-
ment’s DocId or alternatively an error code (e.g. if there are no more documents, ''will be
returned). Typically used after MoveFirst.

Example

ax2ln.Query('Name="A*"');

ax2ln.MoveFirst();

while (StrLen(ax2ln.GetNotesText())>2)

{

 count++;

 print "Count: ",ax2ln.QueryField('Count');

 ax2ln.MoveNext();

}

Error codes

"": No more data in result-set
"0": No data in result-set
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.2

Other references

Query
MoveFirst
MovePrev
MoveLast

 131

MovePrev
Syntax

MovePrev()

Input

None

Output
(Text)
Notes Document ID of the found document or error code.

Function

Finds and selects the previous document in the last query result (Query). Returns the doc-
ument’s DocId or alternatively an error code (e.g. if there are no more documents, ''will be
returned). Typically used after MoveLast.

Example

ax2ln.Query('Name="A*"');

ax2ln.MoveLast();

while (StrLen(ax2ln.GetNotesText())>2)

{

 count++;

 print "Count: ",ax2ln.QueryField('Count');

 ax2ln.MovePrev();

}

Error codes

"": No more data in result-set
"0": No data in result-set
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.2

Other references

Query
MoveNext
MoveFirst
MoveLast

132

NextAttach
Syntax

NextAttach()

Input

None

Output
(Text: Direct)
Filename of the next attachment on the current document.

Function

Returns the filename of next attachment on the current selected document. This method is
normally called after an initial call to FirstAttach and can be used to traverse through all
attachments on a document.

If no more attachments are available an empty string is returned. Remark that error-codes
can also be returned (1 or 2 characters).

Example

attach=ax2ln.FirstAttach();

while (StrLen(attach)>2)

{

 print 'Found attach: ',attach;

 ax2ln.DetachFile('c:\\temp\\'+attach,attach);

 attach=ax2ln.NextAttach();
}

Error codes

””: No more attachments on document.
"2": Form not selected, use method Form
”3”: Document not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

FirstAttach

 133

NextField
Syntax

NextField()

Input

None

Output
(Text: Direct)
Name of the next field in the current document design.

Function

Selects the next field defined in the form (not the current document but the design) and re-
turns the name of the field. Requires that FirstField has been called prior to use. Is typically
used in a loop where all field names are read.

Example

f = ax2ln.FirstField();

while (f!=’’)

{

 print f;

 f = ax2ln.NextField();

}

Error codes

“”: No more fields on form
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.2

Other references

FirstField
NextForm
NextView

134

NextForm
Syntax

NextForm()

Input

None

Output
(Text: Direct)
Name of the next form in the current selected database.

Function

Selects the next form defined in the database and returns the name of the form. Requires
that FirstForm has been called prior to use.
Names of both ordinary forms and subforms are returned.

Example

f = ax2ln.FirstForm();

while (f!=’’)

{

 print f;

 f = ax2ln.NextForm();

}

Error codes

“”: No more forms in database
"2": No logon to database performed
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.2

Other references

FirstForm
NextField
NextView

 135

NextView
Syntax

NextView()

Input

None

Output
(Text: Direct)
Name of the next view in the current selected database.

Function

Selects the next view in the current database and returns the name of this view. Requires
that FirstView has been called prior to use.

Example

f = ax2ln.FirstView();

while (f!=’’)

{

 print f;

 f = ax2ln.NextView();

}

Error codes

“”: No more views in current database
"2": No logon to database performed
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.9.2

Other references

FirstView
NextField
NextForm

136

OpenDialog
Syntax

OpenDialog([<Logon>])

Input
(Optional Boolean)
Optional parameter that specifies, that this command should not only browse but also logon
to the server and database through the parameter TRUE.

Output

None

Function

This method can be used for browsing both between Notes servers and databases. Fur-
thermore, if the additional parameter TRUE is specified, a session with the selected server
and selected table will be established.

Example

ax2ln.OpenDialog(TRUE); // Choose server

ax2ln.logon("Department"); // But not DB

Section

3.2.2.1 and 3.2.2.2

Other references

Server
Logon

 137

OpenServer
Syntax

OpenServer(<Server name>)

Input
(Text)
Specification of server name.

Output

None

Function

Specification of the server to which to create link.
The server name "Local" specifies that the databases should be found on the local work-
station.

Error codes

”1”: Integration kit not initialized – call method Init.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.2.1

Other references

OpenDialog
ServerName

138

PutFieldValue
Syntax

PutFieldValue(<Fieldname>,<Fieldvalue>)

Input
(Text, Text)
1. Parameter: Name of the Notes field whose value is to be set.
2. Parameter: Value.

Output

None

Function

This method sets the field specified in the first parameter to the value specified in the second
parameter. Unlike what is required with SetFieldValue, the field does not have to be defined
in the design of the current form.
The value (the second parameter) must always be of the type ‘text’. Any other formats
should be converted into ‘text’ before the method is called.
It is possible to specify that the field is to be saved with a different type in Notes (since the
field is not necessarily defined in the form). This is done by prefixing the field name by #,
data type, followed by #(see example and Appendix 4).
Date-values must always have the format “dd-mm-yy” or “dd-mm-yyyy” – using dash as
delimiter.

Example

ax2ln.SelectID(F.NotesDocID);

S = Date2Str(F.Dato,123,2,3,2,3,2);

ax2ln.PutFieldValue("#DATETIME#Date",S);

ax2ln.Commit();

Error codes

”3”: Syntax error.
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.2

Other references

SetFieldValue

 139

Query
Syntax

Query(<Notes SELECT command>)

Input
(Text)
A Notes SELECT command, to be used for selecting Notes documents. If a blank (“”) com-
mand is specified, all documents in the current selected view is selected. The word SELECT
is optional.

Output
(Comma-separated file and in-memory result set)
The result of the query is returned in a comma-separated file and as a result set in memory.

Function

This method is used for general queries for Notes documents. If no parameters are speci-
fied, all documents are returned in the current view. This may e.g. be used when views are
available in Notes, which make the necessary selection.
Any parameter specified must be a valid Notes selection. Notes formulas can be used (e.g.
"SELECT @All" or just "@All").
If a temporary file has been assigned, data is also stored in this file as comma-separated
values. Remember to delete the comma-delimited file after use.
Data is also available as an in-memory result-set.
Use MoveFirst, MoveNext, MovePrev and MoveLast to navigate through this result set or
read the comma file.

Example

ax2ln.Query(‘@contains(Number;"1")’);

Error codes

"0": No data found.
"1": Error creating or writing to comma separated file
"9": Form or view not selected, use Form or View
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.1

140

QueryField
Syntax

QueryField(<Fieldname>)

Input
(Text)
Specification of which field in Notes to receive the value from.

Output
(Text: Direct)
Field value

Function

Query on the current document for field value. The document must have been selected prior
to query. Remember that specification of field name must be exact (Notes is case-sensitive).
Return values are always in text. If another value type is retrieved, e.g. date or numerical
value, this must subsequently be converted.

Example

ax2ln.GetUnique("Number","123");

print "Dep. name: ", ax2ln.QueryField("Name");

print "Notes Ref: ", ax2ln.QueryField("Ref");

Error codes

"1": Field is not defined on Notes form
"2": Form not selected, use method Form
"3": No document selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.5

Other references

SetFieldValue

 141

QueryRichTextField
Syntax

QueryRichTextField(<Fieldname>)

Input
(Text)
Specification of the name of the Notes rich-text field whose value should be fetched.

Output
(Text: Direct)
The field value.

Function

Query in the current document for a field value. The document must be selected before the
query. Remember that the field name specification must be exact (Notes is case sensitive).
The return value is always in text format.

Unlike what happens when QueryField is used the value will also be returned to the tempo-
rary file (see SetTmpFileName). This way, it is possible to read the contents of rich text
fields spanning multiple lines.

Example

ax2ln.GetUnique("Number","123");

ax2ln.GetUnique("Number","123");

Print ax2ln.QueryRichTextField('RT');

Error codes

"1": Field is not defined on Notes form
"2": Form not selected, use method Form
"3": No document selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.5

Other references

QueryField

142

QueryUnique
Syntax

QueryUnique(<Notes SELECT kommando>)

Input
(Text)
Specification of Notes SELECT command to be used for selection of one Notes document.

Output
(Text)
Document ID of the found Notes document or error code

Function

This method is used for query for one specific Notes document, which can be selected via a
valid SELECT statement.
Any parameter specified must be a valid Notes selection. It is regarded an error if more than
one document is returned. The method is very useful for queries via more AX key fields (see
example below).

Extended functionality:
By prefixing the first parameter with ’ANY@@@’ the command will not fail if more docu-
ments fulfilling the search-criteria is found. A pointer to the first document is returned.
By prefixing the first parameter with ’MANUAL@@@’ the query will not be fixed to docu-
ments of the current form. Any document complying with the search-criteria will be returned,
regardless of the form used on the document.

Example

s = 'Proj+Proj+'" & Section="'+Section+'"';

ax2ln.QueryUnique(s);

if (StrLen(ax2ln.GetNotesText())>2)

{

...

Error codes

"0": No data found.
"1": Form not selected, use method Form
"3": More than 1 document found
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.3

Other references

Query

 143

QueryView
Syntax

QueryView()

Input

None

Output
(Comma-separated file and in-memory result set)
The result of the query is returned in a comma-separated file and in a result set in memory.

Function

This method corresponds to the Query method, but with this method no SELECT string is
used. Instead all documents in current view are returned in a result-set and in a comma-
separated file (if a temporary file has been assigned).

Example

ax2ln.view('NewDocs');

ax2ln.QueryView();

Error codes

"0": No data found.
”1”: Error creating or writing to comma separated file
"9": View not selected, use method View
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.1

Other references

View
Query

144

RemoveItem
Syntax

RemoveItem(<ItemName>)

Input
(Text)
The name of the item to be removed from current document

Output

None

Function

This method is used to remove an item on the current document. The item does not have to
exist as a field on the current form.
If the item is a multi-value item all values will be deleted.

Example

Ax2ln.RemoveItem(‘Number’);

Error codes

"2": Document not selected
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Other references

Query

 145

SearchFirst
Syntax

SearchFirst()

Input

None

Output
(Text)
The Notes Document ID of the found document or an error code.

Function

Returns the first document of the current view. Using Query by View makes searching much
faster than searching by Query. The view must be open.

The View must be designed in such a way that the first column is sorted and the first

column MUST be of the type 'text' and must not contain columns defined as a “con-

stant”.

Example

ax2ln.SearchFirst();

while (StrLen(ax2ln.getNotesText())>2)

{

 Print "Name: ", ax2ln.QueryField('Name');

 ax2ln.SearchNext();

}

Error codes

"0": No data found.
"1": View not selected, use method View
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.4

Other references

SearchNext
SearchView

146

SearchNext
Syntax

SearchNext()

Input

None

Output
(Text)
The Notes Document ID of the found document or an error code.

Function

Returns the next document in the current view. Using Query by view makes searching much
faster than searching by query.
To be used typically after SearchFirst or SearchView.
The view must be open.
Remark that if this method is used after a call to SearchView only documents matching the
SearchView can be traversed.

Example

ax2ln.SearchFirst();

while (StrLen(ax2ln.getNotesText())>2)

{

 Print "Name: ", ax2ln.QueryField('Name');

 ax2ln.SearchNext();

}

Error codes

"0": No more documents
"1": View not selected, use method View
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.4

Other references

SearchFirst
SearchView

 147

SearchView
Syntax

SearchView(<Search value>)

Input
(Text)
Specification of the value to be searched for in the view.

Output
(Text)
The Notes Document ID of the found document or an error code.

Function
Returns the first document in the current view which matches the search value.
Using SearchView makes searching much faster than searching by Query (full-text).
Should always be used in connection with lookups in views with large amounts of docu-
ments.
The view must be open.

The view must be designed in such a way that the first column is sorted and the first

column MUST be of the type 'text' and must not contain columns defined as a

“constant”.

If there is more than one search key, the search keys must be separated by a separator
(default is semi-colon (”;”)). Furthermore, columns in views in Notes must match the pa-
rameter order.

Example

ax2ln.SearchView('Doe;John');

while (StrLen(ax2ln.GetNotesText())>2)

{

 Print "Name: ",ax2ln.QueryField('Name');

 ax2ln.SearchNext();

}

Error codes

"0": No data found.
"1": View not selected, use method View
"9": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.4

Other references

SearchNext
SearchView
SetDelim

148

SelectID
Syntax

SelectID(<DocID>)

Input
(Text)
Notes Document ID on document to be selected.

Output

None

Function

Direct selection of Notes document via known DocId. The DocId may e.g. have been found
via Query in which DocId is contained as the first field in each line of the comma-delimited
file.

This method is very useful in cases where a reference to a specific Notes document has
been stored in an AX table field.

Example

ID = Afdeling.NotesDocID;

ax2ln.SelectID(ID);

Error codes

"1": Wrong DocId (e.g. invalid ID)
"2": Form not selected, use method Form
"3": Document not found
”4”: Form name missing on found document
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.6

Other references

DeleteID
Query

 149

SelectUNID
Syntax

SelectUNID(<UNID>)

Input
(Text)
The Notes Universal Document ID of the document to be found.

Output

None

Function

Direct query for Notes document using known 32 bytes Universal Document ID. This UNID
can be found by using e.g. UNID. The UNID should be used in stead of DocID when working
across replicas.
Remember to reserve 32 characters for UNID’s in AX’s string variable.

Error codes

"2": Form not selected, use method Form
"3": Document with specified UNID not found
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.4.6

Other references

UNID
SelectID

150

ServerName
Syntax

ServerName()

Input

None

Output
(Text: Direct)
Name of current selected server

Function

Returns the name of the current server selected.

Example

print "Current server: ", ax2ln.ServerName();

pause;

Section

3.3.1

Other references

OpenServer

 151

SetComputeWithForm
Syntax

SetComputeWithForm(<compute>)

Input
1. Parameter: Indication whether formulas should be executed or not
FALSE: Do NOT execute formulas when calling Commit
TRUE: Calculate formulas when calling Commit.

Output

None

Function

When calling the method Commit by default no formulas on form are executed. By calling
SetComputeWithForm this behaviour can be changed, so formulas are executed – as by
calling CommitWithForm.

Example

ax2ln.init();

ax2ln.SetComputeWithForm(TRUE);

ax2ln.CreateNew();

ax2ln.PutFieldValue(’TextItem’, ’Hello World!’);

ax2ln.Commit();

Other references

Commit
CommitWithForm
CreateNew

152

SetDelay
Syntax

SetDelay(<Delay in ms>)

Input
(Number)
Specification of delay in milliseconds between each DLL Notes call.

Output

None

Function

To avoid overloading Lotus Domino servers in connection with updates, a break between
each DLL call to Lotus Notes/Domino can be inserted by SetDelay. The break must be
specified in milliseconds – typically 10-100 ms. This way, the update will be a little slower, but
the server’s becoming very slow will be avoided.
Setting the parameter to “0” de-activates the delay.

Example

ax2ln.SetDelay(100);

ax2ln.SearchFirst();

while (StrLen(ax2ln.GetNotesText()) > 2)

{

 ax2ln.SetFieldValue("Name",DebTable.Name);

 ax2ln.Commit();

 ax2ln.SearchNext();

}

ax2ln.SetDelay(0);

 153

SetDelim
Syntax

SetDelim(<Delimiter character>)

Input
(Text)
Character to be used as search-field separator.

Output

None

Function

Semi-colon is the default separator in connection with the transfer of multiple search values
to SearchView. If this cannot be used, an alternative separator can be set by using
SetDelim.

Section

3.4.4

Example

QStr=CustTable.Name+’@’+CustTable.ZipCode;

ax2ln.SetDelim(’@’);

ax2ln.SearchView(QStr);

154

SetFieldValue
Syntax

SetFieldValue(<Fieldname>,<Fieldvalue>[,<COMMIT>])

Input
(Text, Text[, Boolean])
1. Parameter: Field in Notes to be updated
2. Parameter: Value to update with
3. Parameter: Optional selection of commit

Output

None

Function

This method sets the field specified in the first parameter to the value specified in the second
parameter. Value (second parameter) must always be of the type text. Any other formats
must be converted to text before the method is called. Existing field contents are overwritten
by this method.

Date-values must always have the format “dd-mm-yy” or “dd-mm-yyyy” – using dash as
delimiter.

If TRUE is specified as the third parameter, the value is stored in Notes immediately. This is
useful in the case of a single update. If more fields are subsequently to be updated, Commit
should be called separately as a final command.

Example

ax2ln.SelectID(F.NotesDocID);

ax2ln.SetFieldValue('Date',Date2Str(F.Dato,123,2,3,2,3,2));

ax2ln.commit();

Error codes

"1": Field not found in form
"2": Form not selected, use method Form
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.5.2

Other references

AppendFieldValue
SetRichFieldValue
QueryField

 155

SetHandle
Syntax

SetHandle([<Handle number>])

Input
(Number)
Optional specification of handle for Lotus Notes

Output

None

Function

In case of need to use multiple open sessions in Lotus Notes, this can be achieved by using
multiple handles. The integration kit supports up to 15 current handles.
Use SetHandle to switch between handles. Each session has its own connection with Lotus
Notes.

Example

ax2ln.SetHandle(2);

ax2ln.OpenServer("Local");

ax2ln.Logon("MyDB.nsf");

ax2ln.Form("Form 2");

ax2ln.View("View 2");

//Return to previous session

ax2ln.SetHandle(1);

Section

3.2.4

Other references

GetHandle

156

SetKeepUnread
Syntax

SetKeepUnread(<Keep>)

Input
(Boolean)
Specification of whether a check is required to see if field should be overwritten.

Output

None

Function

Normally, the integration kit will overwrite existing data regardless of any differences between
the new field value and the old one. This means that the document will be marked as unread
and LAST_MODIFIED will be changed. In certain situations, however, data may only be
overwritten if the field values do differ. SetKeepUnread handles this. If it is activated the field
value will be read before each write and writing in Notes will only take place if the new field
value is different from the old one.

Example

Ax2ln.SetKeepUnread(TRUE);

Section

3.4.7

Other references

CompareField

 157

SetListDelim
Syntax

SetListDelim(<Delimiter Character>)

Input
(Text)
Character to be used to delimit values in a multi-value field.

Output

None

Function

AX does not, as Lotus Notes, support multi-value fields. To transfer values (e.g. by
SetFieldValue) to a multi-value field each value can be delimited by a delimiter character.
The default delimiter in the integration kit is “;”. If this character is not suitable (e.g. when
transferring values including semi-colon in the value), this delimiter character can be
changed by using SetListDelim.

Example

S = ’’;

ax2ln.SetListDelim(’@’);

while select EmplTable

where (EmplTable.CountryId == '')

 s = s+EmplTable.Name+'@';

ax2ln.SetFieldValue('LocalContacts',s);

Other references

SetFieldValue
AppendFieldValue
AppendTextList

158

SetLog
Syntax

SetLog(<Log>)

Input
(Boolean)
Specification of whether the logging of debug info is to take place in a file.

Output

None

Function

Sometimes it is a good idea to be able to trace the debug information without having to
monitor the computer. SetLog activates logging to a file in stead of to the screen.
Remember to specify the name of the log file and to de-activate file logging when the de-
bugging is over since all messages will be written in a file and thus not shown on the screen.

Example

ax2ln.SetLogFileName(‘debug.log’);

ax2ln.ClearLog();

ax2ln.SetLog(TRUE);

ax2ln.Debug(TRUE);

ax2ln.SearchView(‘1234’);

ax2ln.SetLog(FALSE);

Section

3.10.3

Other references

ClearLog
SetLogFileName

 159

SetLogFilename
Syntax

SetLogFileName[(<Log filename>)]

Input
(Text)
Specification of the file in which debug logging must take place.

Output

None

Function

In connection with the use of SetLog, this method is used to specify the name of the file in
which the log information must be written.
If an empty string is supplied, the default log file name is used (can be defined in erp2ln.ini).

Example

ax2ln.SetLogFileName(‘debug.log’);

ax2ln.ClearLog();

ax2ln.SetLog(TRUE);

ax2ln.Debug(TRUE);

ax2ln.SearchView(‘1234’);

ax2ln.SetLog(FALSE);

Section

3.10.3

Other references

SetLog
ClearLog
Debug

160

SetRichSepMode
Syntax

SetRichSepMode(<SepMode>)

Input
(Boolean)

Specification of how the Integration Kit handles rich-text fields when using Query.
FALSE: Fields in primary comma separated result file
TRUE: Fields in separate text-files.

Output

None

Function

If parameter is FALSE, the first line of each rich-text field is stored in the primary comma-
delimited file in connection with Query.
If parameter is TRUE, rich-text fields will not be placed in the comma-delimited file returned
as primary outcome on the call of Query. Instead it will be placed in separate comma-
delimited files in the subdirectory "RichText". One file per rich-text field per document.
See section 3.6.2.2 for a more detailed description.

Section

3.6.2.2

Other references

GetRichSepMode

 161

SetTmpFileName
Syntax

SetTmpFileName([<Filename>])

Input
(Text)
Optional specification of name on temporary file.

Output

The name of the temporary file is returned with GetNotesText

Function

This method is used before call of Query for specification of the file name of the temporary
comma-delimited file in which the query result is returned. If a parameter is specified, this will
be used as file name. Normally no parameter is specified in which case the integration kit
"computes" a unique file name. After call of SetTmpFileName, the file name can be read
With the method GetNotesText.
Remember to delete the temporary file after use.

Example

str 60 Filename = 'c:\\temp\\test.$$$';

...

ax2ln.SetTempFileName(FileName);

ax2ln.Query('select @All')

...

ax2ln.DeleteTmpFile();

Section

3.3.3

Other references

Query

162

ShowAll
Syntax

ShowAll()

Input

None

Output

None

Function

Opens a window with miscellaneous information about the integration kit and the current
session:

 Version number

 Any restrictions (e.g. only mail.-functionality)

 Miscellaneous information regarding serial number

 Session number

 File name of temporary file

 Current Notes.ini file used

Example

ax2ln.Init();

ax2ln.ShowAll();

Section

3.3.1

 163

UIOpenDocument
Syntax

UIOpenDocument()

Input

None

Output

None

Function

Opens the currently selcted document in the Lotus Notes client.

Example

ax2ln.OpenServer("Local");

ax2ln.Logon("MyDB.nsf");

ax2ln.Form("Form 2");

ax2ln.View("View 2");

ax2ln.SearchFirst();

ax2ln.UIOpenDocument();

Other references

MailComposeOLE

164

UNID
Syntax

UNID()

Input

None

Output
(Text: Direct)
Notes Universal Document Id of active document in Notes.

Function

Returns the Notes Universal Document Id of the active document in Notes. The Notes Uni-
versal Document Id is a 32-character string which is unique in a database across replicas.

Example

ax2ln.selectId('00001A22');

print ax2ln.UNID();

pause;

Section

3.5.5

Other references

SelectUNID
DocID

 165

View
Syntax

View(<View name>)

Input
(Text)
Name of view in Lotus Notes to use.

Output

None

Function

Specification of the view in Notes that is to be used for queries with Query without parame-
ters.
If view name is contained in parenthesizes (hidden view), these parenthesizes shall not be
used in view name.

Example

ax2ln.View('All');

print "Current view: ",ax2ln.ViewName();

ax2ln.SearchView(MyKey);

Error codes

"1": View not found in database
"9": Logon to database is missing
"99": “Exception error”: Other error from Integration Kit.
 See Error Message in Window.

Section

3.2.2.3

Other references

ViewName

166

ViewName
Syntax

ViewName()

Input

None

Output
(Text: Direct)
Name of current view

Function

Returns the selected current view in Lotus Notes, defined via View.

Example

print "Current view: ",ax2ln.ViewName();

pause;

Section

3.3.1

Other references

View

 167

Appendix 1. Troubleshooting

Checklist

1. Check if the path to the binary files in Lotus Notes and Notes.ini are located in the system variable

PATH.
2. Check that there is an individual Notes.ini file for all users. The Integration Kit reads information

about the user’s mail settings. This requires a Notes.ini for each user in e.g. a Citrix-environment.
3. If you have a Lotus Notes client version 6 or you recently up-graded your Lotus Notes client 5 to a

6 the DLL ‘nlsxbe.dll’ might have to be reregistered. Do this by opening the Windows start-menu,
select Run and enter the following (without the single quotes): ’regsvr32 c:\lotus\Notes\nlsxbe.dll’.
Remember to replace the path ‘c:\lotus\Notes’ with the path to you installation of the Lotus Notes
client.

4. If both Lotus Notes 5 and 6 installed, this can cause problems. The Integration Kit uses a COM-
object which is registered by Lotus Notes on installation. If Notes 6 is installed afterwards it will
overwrite part of Notes 5’s registration. Try to reinstall Lotus Notes 5 to see if the problem disap-
pears. As a rule of thumb, the Notes client installed last must be the one to be used for the Inte-
gration Kit.

5. If Dynamics AX freezes during startup (after the user name and pass-word have been entered),
the kernel version of AX must be checked. The kernel (ax32.exe) must be version 2.5.1270.3703
or later. Earlier versions cause problems if the Windows operating system is updated with the lat-
est security updates. This is a general error in AX.

6. Check that the correct AX client is being used on startup. The Integrations Kit depends on it being
the correct client since Integration Kit-files are located in the bin-directory of the client.

7. Check if there is more than one Notes.ini. The Notes.ini which is active and is being used by the
Integration Kit can be found by selecting the Windows Start menu and clicking run. Enter
Notes.ini and click [OK]. You can also search the lo-cal workstation for Notes.ini-files. The Ini-file
may be located in a network drive. If the active Notes.ini is the wrong one, errors may occur in AX
when a synchronization job is being run. The error is that it will constantly say that the user in AX
is not identical with the user in Lotus Notes (the username is found in Notes.ini).

8. If you use the distribution program ’Snow’, you must be aware that the internal function ’Regis-
terDLL’ does not work properly in all Window versions. Use Windows’ own version ’regsvr32.exe’
in stead (use the parameter /s for run ’silently’).

9. Windows will err when you register smmDrop2.ocx and smmWrap.ocx in Windows 9x. It has
been reported that the ocx-files mentioned must be registered from the Dynamics AX client’s bin-
directory. Therefore, you must copy the file regsvr32.exe to the bin-directory before executing it.
This is not an error in the Integration Kit.

168

Appendix 2. Known errors and limitations

2.1 Cleanup at errors

Must of the possible errors that can occur when integrating Dynamics AX with Lotus Notes, is handled
by the Integration kit. Error codes can normally be retrieved by the method GetNotesText.
But from time to time there can be special case, where errors are not “caught” by the Integration kit.
These errors occur outside from AX, in the connection between the DLL and the Lotus Notes API. If
possible the integration kit will display a Windows error message and return with error code “99”.
There may be some situations where the Integration kit can not handle the error. It may be necessary
to shutdown the AX windows-process (Ctrl-Alt-Delete or Windows Task manager).

If the Integration kit is shutdown this way no memory cleanup is performed. In some cases this may
lead to instability when performing AX integration with Lotus Notes afterwards.
Restart the client if this occurs.

2.2 Multi-value fields at Query

Lotus Notes supports multi-value fields. This functionality is not supported in the same way in AX.
When requesting such a value from Lotus Notes, the values are returned delimited by semi-colon (or
another delimiter set by SetListDelim).

Caution should be taken to handle return values from multi-value fields. The AX code should handle
the split of values to e.g. separate records in AX.

The method AppendTextList does only support text multi-value fields.

2.3 Mail-error at errors in mail-integration

Errors in the mail-methods can cause problems with the functionality regarding the method
MailSetError.

2.4 Attachments in rich-text fields

When deleting an attachment on a rich-text field, the icon is not removed. The attachment is removed.

2.5 Limitations in graphics formats

The Integration kit does not support all graphic formats in the methods MailBodyFile and ImportFile.
The following formats are supported:

 ASCII, standard ASCII-files (TXT, PRN,ASC...)

 Rich-text files (RTF).

 PCX-files

 BMP-files

 TIFF-files

 169

These formats can vary in their formats – not all variants are necessarily supported. It is recommend-
ed, that the compatibility is tested for the necessary formats.

2.6 DocId at replicas

It is important to know, that DocId’s is only unique inside one database. If the database is replicated to
another server, the DocId could change. If DocId is used as an identifier in the AX code, it is important
that the same database is used always. It is better to use GetUnique, QueryUnique, SearchView or
other methods, that uses data-keys for lookup.
Another option is to use UNID as a key. This value is unchanged if data is replicated to other data-
bases and servers.

2.7 Length of field values

The integration kit does not support field values larger than 32.000 characters (RichText fields can be
larger, by adding more content in sequence).

2.8 The field ”Form” must be present on documents

The integration kit does, in most cases, rely on information from the form-design. Therefore the field
form must always be present in documents handled by the Integration kit.

170

Appendix 3. Type of design elements

With the methods FieldType and FormType it is possible to get information regarding fields and forms
from the design in Lotus Notes.

The following field types can be returned from FieldType:

 Unknown

 Error

 Text

 Number

 DateTime

 RichText

 TextList

 NumberList

 DateTimeList

The following form types can be returned from FormType:

 Main

 Response to Main

 Response to Response

 171

Appendix 4. Data type parameters

The following methods, who operates on ”items”, can be called with a special prefix in first parameter
that indicates which data type the item should be stored as in Lotus Notes:

 PutFieldValue

 AppendFieldValue

 GetFieldLength

 GetFieldValue

The following types can be used:

 TEXT use #TEXT#

 NUMBER use #NUMBER#

 DATETIME use #DATETIME#

 TEXT_LIST use #TEXT_LIST#

 NUMBER_LIST use #NUMBER_LIST#

 DATETIME_LIST use #DATETIME_LIST#

Examples:
PutFieldValue(’#NUMBER#Amount”,”123,45”)
AppendFieldValue(’#DATETIME_LIST#Dates’,TodayStr)

Remember to use the format “dd-mm-yy” or “dd-mm-yyyy” on date items.

172

Appendix 5. INTOGRATE in a Terminal/Citrix environment

To install INTOGRATE in a Terminal/Citrix environment the following software must be installed on
the server:

 Lotus Notes client (R5 or later)

 Dynamics AX client

A common setup for Dynamics AX would be to install a local AX client on the Terminal/Citrix-server
(to optimize for speed).

The usual way of deploying Lotus Notes client on Terminal/Citrix is described in the following Redpa-
per from IBM (see chapter 5.4.3 or 5.4.4 depending on your version of Lotus Notes):
http://www.redbooks.ibm.com/abstracts/redp3629.html
More specific details about installing Lotus Notes on a Terminal/Citrix server should be obtained from
your Lotus Notes vendor.
In this scenario the Lotus Notes client is installed in "C:\Program Files\Lotus\Notes" and each user’s
data-directory is "H:\Notes\Data" (containing both the data files and the notes.ini file).

When Dynamics AX and Lotus Notes are ready for use, INTOGRATE can be installed.
The procedure is as follows:

1. Install INTOGRATE either by running the installation program or by using the manual proce-
dure described in section 2.

2. Configure the system environment PATH to include "H:\Notes\Data".

3. Install INTOGRATE in AX by importing the XPO-files.

When running INTOGRATE on Terminal/Citrix, make sure the following settings are enabled in

erp2ln.ini (the same directory that contains the ERP2LN.DLL file):

 DisableNotesSetupDialog=1
 DisableRegistryCheck=1
 DisableRegistryAutoFix=1

These settings will prohibit INTOGRATE from modifying the Windows registry on the server.
A few hints:

 Make sure there is only one notes.ini for each user (sometimes there is a notes.ini elsewhere
in the system/user environment path)

 Make sure you have the latest version of INTOGRATE (at the time of writing the current ver-
sion is 1.6.0.343).

Try to add the Lotus Notes binary directory to the system PATH (e.g. "C:\Program Files\Lotus\Notes").
This might solve some issues with the Lotus Notes setup.

 173

Appendix 6. Adjustments to Microsoft Dynamics AX

The below table describes all the elements in Microsoft Dynamics AX which are modified or added as
part of “INTOGRATE AX”.

All modifications made to existing elements in Microsoft Dynamics AX are commented in the following
manner:

// INTOGRATE AX: START
.... code modifications
// INTOGRATE AX: END

Modifications to local and global variables are not described in the code, but can be seen in the text
versions of the import files. These can be found on the INTOGRATE CD or in the installation directo-
ry.

New elements

Object type Object – method Project

Class AX2LN I2I_LN

Class AX2LN_addon I2I_LN

174

Appendix 7. Manual installation of the Integration Kit

It is possible to install the Integration Kit without using the installation program. This may be advanta-
geous if the installation is to be carried out in a large environment and the files are to be distributed to
multiple workstations or an advanced installation is involved e.g. a Citrix-based network.

Unpacking files

If the installation kit is packed into one file, it must first be unpacked. This is done by starting
“INTOGRATE AX - CRM x.x.x.x.exe” and selecting the drive in which the files are to be unpacked.
The destination of the files must be a local drive or a network drive.

Copying files

When the files have been unpacked they must be distributed to the relevant directories.
The following files must be copied to ”…\Microsoft Dynamics AX\40\Client\Bin” (they can be found in
”data\files” in the installation directory).

ERP2LN.DLL
ERP2LN_ADDON.DLL
ERP2LN.INI (optional)
I2ICOMP.OCX

Setup of PATH

For the integration to work properly Lotus Notes’ binary files and notes.ini must be located in the sys-
tem variable ”PATH”. In our example, both the binary files and notes.ini are located in
”C:\LOTUS\NOTES”. If this is different in your installation, use your settings instead.
Setting up the PATH in newer versions of the integration kit is most likely not necessary. The location
of the Lotus Notes binary-directory and notes.ini can usually be found in the Windows registry. Based
on the registry the integration kit will automatically retrieve the correct locations. Note: in environments
where users cannot edit the registry on the local computer you must add the Lotus Notes binary direc-
tory to the PATH as described above.
If you plan to start Lotus Notes with a direct path to a notes.ini (ex. “notes.exe =m:\notes\notes.ini”) the
registry must also be set up accordingly.
When the integration kit starts up, the location of the binary directory and notes.ini are read from the
following key in the registry:

HKEY_CLASSES_ROOT\CLSID\{29131502-2EED-1069-BF5D-00DD011186B7}\LocalServer32

An example value could be:

(Default)="C:\Program Files\lotus\notes\notes.exe =m:\notes\notes.ini" /Automation

The reason why notes.ini must be set in this registry is that Lotus Notes can be started from several
locations that do not use the shortcut with a direct path to notes.ini. An example of this is when a user
clicks on a mailto-link on an internet page. The browser will use the registry to start Lotus Notes, and
not a shortcut on the desktop or in the programs menu.

Check PATH configuration

To check if PATH has been correctly set up, you must start an MS-DOS prompt. In MS-DOS, type
”Path” and press return. The operating system will now present a list of the directories in the current
setup separated by semi-colons. Check that both the directory for the binary files and the one for
notes.ini are included in the list separated by semi-colons.

Setup of PATH in Windows 9x

If the path to the binary files or notes.ini is missing, Autoexec.bat must be modified in the fol-

lowing way:

Kommentar [AHH1]: Mangler her ikke
noget?

 175

1. Start the text editor in an MS-DOS prompt by typing ”EDIT C:\AUTOEXEC.BAT”.
2. Find the line that begins with ”PATH=”
3. If the line exists, add the following: ”;C:\LOTUS\NOTES”. Example of correct PATH:

PATH=C:\WINDOWS;C:\WINDOWS\COMMAND; C:\LOTUS\NOTES;

4. If the PATH line does not exist, then add the following at the end of AUTOEXEC.BAT:

PATH=%PATH%;C:\LOTUS\NOTES;

5. Save the changes by selecting ’Save’ in the ’File’ menu.
6. Close the text editor by selecting the menu ’File’ and the item ’Exit’.
7. Exit the MS-DOS command prompt by typing ”EXIT” and pressing return.
8. Restart you computer and check the ”PATH” settings by means of the procedure described in the

section ’Check PATH configuration’.

Setup of PATH in Windows NT/2000

1. Right-click ’My computer’ on your desktop and select ’Properties’.
2. Select the ’Advanced’ tab and click the button ’Environment Variables…’.
3. Under ’System Variables’, select the line that includes the word ”Path”.
4. Click ’Edit’ and check if the path to ”C:\LOTUS\NOTES” is there. If not then add it at the end of the

line (remember to insert a semi-colon before you add the directory name to the path).
5. Save the settings by clicking the [OK] button in the three following dialog boxes.

Setup of the Windows registration database

The component 2ICOMP.OCX must be registered in the Windows registration database. This is done
as follows:

1. Click the Windows start button and select the menu item ’Run…’.
2. Enter the following in the textbox and click the [OK] button:

regsvr32 “c:\Navision\Microsoft Dynamics AX Client\bin\I2ICOMP.OCX”

3. A box with the text "DLLRegisterServer in x:\...... succeeded" will appear. This indicates that the
component is correctly installed.

It is possible to run this part of the user installation without user interaction. Use the parameter ”/s” on
regsvr32.exe. Example:

regsvr32 “c:\Navision\Microsoft Dynamics AX\40\Client\Bin \I2ICOMP.OCX” /s

Kommentar [AHH2]: Ser ud som om I
selv har rettet dette til 6,7,8. Så derfor
gør jeg intet. Men skulle det ikke være
1,2,3?

176

Appendix 8. Troubleshooting

Checklist

1. Check if you can send an email from your Lotus Notes client. Try starting your Lotus Notes client
and pressing <CTRL>+<M> to create a new memo. If this does not work, check the settings in
your location document (check that a mail server and a mail file have been specified).

2. Check if the path to the binary files in Lotus Notes and notes.ini are located in the system variable
PATH. See Appendix 7 for help with this.

3. Check that there is an individual notes.ini file for all users. The Integration Kit reads information
about the user’s mail settings. This requires a notes.ini for each user in e.g. a Citrix-environment.

4. If you have a Lotus Notes client version 6 or you recently upgraded your Lotus Notes client 5 to a
6 the dll ‘nlsxbe.dll’ might have to be reregistered. Do this by opening the Windows start-menu,
select Run and enter the following (without the single quotes): ’regsvr32 c:\lotus\notes\nlsxbe.dll’.
Remember to replace the path ‘c:\lotus\notes’ with the path to your Lotus Notes client.

5. If both Lotus Notes 5 and 6 (or 7) are installed, this can cause problems. The Integration Kit uses
a COM-object which is registered by Lotus Notes on installation. If Notes 6 is installed afterwards
it will overwrite part of Notes 5’s registration. Try to reinstall Lotus Notes 5 to see if the problem
disappears. As a rule of thumb, the Notes client installed last must be the one to be used for the
Integration Kit.

6. Check that the correct Microsoft Dynamics AX client is being used on start-up. The Integration Kit
depends on it being the correct client since Integration Kit-files are located in the bin-directory of
the client.

7. Check if there is more than one notes.ini. The notes.ini which is active and is being used by the
Integration Kit can be found by selecting the Windows Start menu and clicking run. Enter notes.ini
and click [OK] (if this does not find a notes.ini file, then see the section on the setup of PATH on
page 174). You can also search the local workstation for notes.ini-files. The Ini file may be located
in a network drive. If the active notes.ini is the wrong one, errors may occur in Microsoft Dynamics
AX when a synchronisation job is being run. The error symptom is a constantly reappearing mes-
sage saying that the user in Microsoft Dynamics AX is not identical with the user in Lotus Notes
(the username is found in notes.ini).

8. If Microsoft Dynamics AX says that “ERP2LN.DLL” cannot be found, make sure that the ‘alt. bin
directory’ in the Microsoft Dynamics AX configuration is set up to point to the Microsoft Dynamics
AX client’s bin-directory.

9. If you use the distribution program ’Snow’, you must be aware that the internal function ’Regis-
terDLL’ does not work properly in all Windows versions. Use Windows’ own version
’regsvr32.exe’ in stead (use the parameter /s for running it ’silently’).

10. Windows will cause an error when you register smmDrop2.ocx and smmWrap.ocx in Windows
9x. It has been reported that the ocx-files mentioned must be registered from the Microsoft Dy-
namics AX client’s bin-directory. Therefore, you must copy the file regsvr32.exe to the bin-
directory before executing it. This is not an error in the Integration Kit.

Kommentar [AHH3]: Samme som før.
I har rettet til start bullet 9, men hvorfor
skal den ikke starte med 1?

 177

Appendix 9. Configuration - ERP2LN.INI

Logging system
INTOGRATE has the option to write detailed error messages, warnings and information to a log file,
helping to identify most issues.
This is configured using INTOGRATE’s configuration file “ERP2LN.INI”.
“ERP2LN.INI” is located in the same directory as “ERP2LN.DLL”. The exact location depends on the
installed INTOGRATE product (typically “C:\Program Files\INTOGRATE Navision”).
It is possible to select the level of detail to write to the log file. This is controlled by the “FileLogLevel”
setting. Possible values are as follows:

0 Nothing is logged
1 Errors
2 Information
4 Debug
8 Trace/Debug (will cause a severe reduction of performance)

To enable several levels simply add the numbers together. For instance to enable “Errors” and “Infor-
mation”, FileLogLevel must be set to 3 (1 + 2). To enable full logging use the value 15.
Procedure to change “ERP2LN.INI” (lines beginning with semicolon are considered comments and
will not be processed by INTOGRATE):
Open “ERP2LN.INI” in Windows Notepad (or similar text editor).
Search for the word FileLogLevel (this will locate the section where the file log level is set, showing
examples of use etc.).
Add a new line

FileLogLevel=XX

where XX is the level of details to log (use 15 to enable full logging).
Save and close the file.
Restart Navision to activate the changes.
The log file has a default location of “C:\Documents and Settings\<username>\Local Set-
tings\Temp\ERP2LN” where “<username>” is the currently logged on Windows user.
This can be changed in “ERP2LN.INI” by setting the LogDirectory to an alternative location (using the
same procedure as with FileLogLevel).

