INTOGRATE NAV - Developer

Lotus Notes Integration Kit

For Dynamics NAV
Version2.3.1

INTO GRATE

4

ImINT

O T o T [0 o 1T 1T 6

1.1 INTOGRATE NAYV to Lotus Notes integrationeeeiieeeeeiieiiiiiie e 6
2 B 1T Tod = o = 6
IR T = 10 =] =T Lo L= o o = SR 7
I =14 0111 o] [To | SRS 7
RS ©o] 1 4 0o] 0[] o | £ TP PP 8
1.5.1 Windows program library ERP2LN.DLLuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinieiieeeeeeneeees 8
1.5.2 COM-0bject ERP2LN_COM.DLLuutttiiiiiiiiiiiiiiiiiiiiieiieeinninnneeneeseeneeneneesnnnens 8
I G T I =1 11 T S 8
2. Program inStallation ... 9
2.1 BEFOIE YOU STAN ... e e e e e e e e e e e e e e e e et e e e e e e e e aarraa s 9
D I RSV =T B =0 [0 1T =T 1T € 9
A O 1= o3 {1 PP 9
2.3 Installation of INTOGRATEcooiiiece e e e e e e e e e e e e eneenas 9
2.4 LICENSE Il .ttt 10
2.5 1INStallation IN NAV ... e e e e e e e e e e e aaa 10
2.6 InStallation iN LOtUS NOTESiiiieiieeeiiiee e e e et s e e e e e e e et s e e e e e e e eeaeennnns 10
2.6.1 Avoid promptings for PASSWOI.........ccoiiiiiiiiiiii e 10
2.6.2 Disable visible Notification.............oooeeeeie i 10
2.6.3 Precautions with Lotus NOtes changes ..., 11
T Y]l) v= Ut (=T SRR 12
3.1 Installing the Customer database.........cooiieiiiiiiiiiiiiii e e 12
G T N Yo o T [PR 13
3.3 Example WalkthroUgGNuiiiiiiii e 15
4. USING INTOGRATE DEVEIOPETt s e e e et e e e e e e aanees 17
4.1 Calling methods and PropPertieSccoeeeeeeeeeee e 17
4.2 ConNECtiNg t0 LOTUS NOTES......coieieeeeeeeee e 17
4.2.1 Setting server and database..............oouuiiiiiii i 17
4.2.2 Setting form and VIEBWouuiiiiii i e e 18
4.2.3 SWILCNING SESSIONScoiiiiiiiiiiiieiie e 18
4.3 QUENES AN I0OKUP....ceiiiiiii ettt e e e e e et e e e e e e e e e e e et e e e e e e e eeeraaaans 19
4.3.1 Selecting a SiNgle dOCUMENT.........cooiiiiiie e 19
G T @ LU 1= 1= S 20
4.3.3 lterating documents in a VIeW DY KEY(S)ccvvviiiiiiiiiiiiiiiiiiiii 20
4.3.4 Iterating all dOCUMENLES IN @ VIEWoiiiiiiiii i 21
4.4 Data ManipUIAtIONuuiiiii e e e et e e e e e e e e e e e e e e e a 22
4.4.1 Creating and Saving OCUMENTSccuiiiiiiiiiiiiiiiiiie ittt 22
4.4.2 Reading and Setting VAlUESooooiiiiiii e 22
4.4.2.1 Large teXt CONTENL......coiteieeeeie et e et et e e e e e e e eaa s 23
4.4.2.2 Text lists and MUIti-value ItEMS..........oiii i 23
4.4.2.3 Date/time fOrMAL..........ouueiii i e e 24
A W [] 1= gl (0] 1 1 = 24
4.4.3 Deleting dOCUMENTScoiiiiiiiiiieiieeee e 24
e o i = o]] 1 0=] 24
N /- | R 25
4.5.1 Receivers and SUDJECT e 25
4.5.2 BOAY CONTENT ..ot 25
4.5.3 AtACKH FIlES ..o 26
4.5.4 SendiNg @ MAIL........oiii e 26
4.5.4.1 MAII SIGNATUIEueiiitiiiiitiettetiieeeeeeeeeee bbbt e et b e s bbb sbeesnnnnnes 27
4.5.5 Automatic Error Messages by €-malilccccooviiiiiiiiiiiiiiee e 27
4.6 EITOr NANGING ... 28
Appendix 1. Developer reference (API)...... .o 29

Name Of MEtNOU OF PIrOPEITYuuuiiiiiiiiiiiiiieee et nnnnnnnne 29

o3 1)Y= = 0T | 30
o3 1)Y= = a1 | 31
AAAQUETYFIEI.ceiiiiiiiiieeeieeeeeee ettt 32
APPENAIEMVAIUE ... et e e e e e e ettt a e e e e e e e e e atta e e e eaaeeeannes 33
F Y o] 01T T I =L] PSSP 34
YA 1= Tod o T 35
ClearQUEIYFIEIAS ... 36
(00 1 01 o 11| 37
(O00) 001 a aT1XTATA11 01 L0] 2 4 I 38
COMPUEEWIENFOIM. . 39
(OF LY=L (=] I 0] St | [40
@R =T 1= N[41
DElEtECUITENTD OCUIMEIT . .eeeiieei et e et et et e e s e e e et e et e e s sae e st s sasssasesnessnsssnesnss 42
DEIEtETEMPIIIE ..ttt 43
(D12 = (] | 44
100 1o o I 45
00 Yo T 46
(B Lo o1 Ul g =] a1 M= 1Y 1Y [Yo 1] (o I 47
=t (o PR 48
e (0] (O 0o [49
L (0T ISP 50
L6 1 1 PR 51
L0 10 | o |5 10T o3 52
LT =] (o V2= 1 [0 53
[Ty L0 1 NV4= 11U TS 54
GREUNIQUE ...t 55
[l oo T |l [T P PP PPTPPT PP PTTPRTRPRRRTRRRRN 56
1 LT 57
LT AV = [L= 58
KEEPUNIEAM ...ttt 59
[CE) YD L= [T (= S RUPPPUPPPRR 60
(1S (1= [0 61
[0 T o) o PP 62
MaITAPPENASIGNALUIE ...ttt 63
Y E= X1 TN 1 =Yoo ol | 64
=11 = L 65
IVTRUIBOOY ... e 66
MAIIBOAY TEXL ...ttt e e e e e e et e e e e e e e e e e s et e e e e eaeeeesasba e e eeaeeeeessaaannns 67
;=1 T 68
VTG OIMIPOSE ... 69
Y E= T (O =F= L T T[T 70
Y = 1] = o T 71
MaITMPOITBOUYFIIE ...t 72
Y F= 11 ST o o T 73
LY F= 11 ST o N 1 74
Y= TS o) = o USSR 75
1Y (0 AV T 2= T 76
1Y [0 1YL= e T 77
1Y 10 1YL= AN L=« 78
1Y [0 SY o £ P 79
(@0 g ST oY PP PP UUPPPPPTPPTPRR 80
L0 11 =T PP PTPPPTT 81
QUEINYRICATEXIFIEIA ... e e e e e e e e 82

LT 1T 1Y (= o 1 84

ST ST= 1 (o] o1 T) A 85
STST=1 (e 011 =0 86
ST=T= L] A AV AT 87
BLIC=] 0] o 1= SRR 88
TrUNCAtEREIUINSIIING ...ceiieiiiiiiei e e e et e s e e e e e e e e e et s e e e e e e e eeeaaaans 89
(] TR 90
(O ST =T =11 [91
[AT 92

1 Introduction

1.1 INTOGRATE NAYV to Lotus Notes integration

INTOGRATE NAYV - Developer enables close integration between Dynamics NAV and Lotus
Notes.

The technology applied in INTOGRATE NAYV is based on integration to Lotus Notes via a
Windows DLL program library and COM-technology. All administration and set-up tasks are
carried out in NAV.

INTOGRATE features:

e On-line integration functionality
All NAV updates can be coordinated with Lotus Notes updates. It is possible to cancel
updates in case of e.g. a missing connection.

e Strict observance of security routines in both systems
It is not possible to evade system security routines, neither in Lotus Notes, nor in
NAV.

e Embedding in standard NAV code
Coding is done directly in the NAV development environment using NAV methods.
This ensures that NAV’s rules of integrity are followed.

e Transparent access to Lotus Notes
Lotus Notes can be accessed immediately with no need for coding or changes in
Lotus Notes design-elements?!. This enables e.g. integration with Lotus Notes
applications for which the user has no access to source code but knows only the
names of databases, forms and fields in Notes.

e Sending of e-mails from NAV
It is possible to integrate with the E-mail system, which will enable e.g. work-flow
systems to be implemented in NAV.

e Direct access to Lotus Notes API
Because INTOGRATE has been developed specifically for Lotus Notes, it provides
many Lotus Notes specific options and types of information.

INTOGRATE is also available for the applications Axapta and CONCORDE XAL.

1.2 Disclaimer

To prevent any side effects in your existing NAV any changes to your Dynamics NAV
installation should be verified by the authority responsible for your NAV application (normally
your NAV vendor). This includes hot fixes, patches, upgrades etc.

1 Under certain circumstances, sending reports from NAV requires a minor modification of
the Lotus Notes mail template.

1.3 Target audience

As the integration kit INTOGRATE Developer) contains a collection of tools for integration
with Lotus Notes via NAV’s development environment, this manual is primarily intended for
personnel with some knowledge of NAV’s programming facilities.

However, the level of programming knowledge required much depends on the degree of
integration wanted between NAV and Lotus Notes.

In order to use INTOGRATE Developer, some knowledge of Lotus Notes is of advantage,
especially as regards the names of

Databases
Views
Forms
Fields

This information is required for in-house programming of integration solutions. However,
skills in using the tools that supply this information from Lotus Notes can be acquired in a
very short time. It is recommended that data transfer and manipulation in Lotus Notes be
approved by the person(s) responsible for the company's Lotus Notes application(s).

1.4 Terminology

In the following sections, elements of NAV, references to menus, etc. are referred to as
described in the below table:

<KEY> Refers to a key on the keyboard. For example,
<ENTER> means that you must press the Enter
key.

‘Menu\sub-menu\menu item’ Refers to a menu selection. For example,
File\Open’ means that you must click ‘Open’ in the

File’ menu.

"c:\Lotus\Notes” Refers to a path to either a file or a directory. Notice
that the style resembles that of a menu selection.

NAVElement NAV elements are referred to in italics, e.g. the
code unit Mail.

[button] Refers to a button on the screen. For example, [OK]

refers to a button with the text ‘OK’.

MethodOrProperty All references to methods and properties in the
INTOGRATE Developer are highlighted as shown.

1.5 Components

INTOGRATE NAV consists primarily of two main components: a COM-object
“‘ERP2LN_COM.DLL” and a Windows program library called "ERP2LN.DLL".

15.1 Windows program libirary ERPZIN.DIL

This is the core of INTOGRATE and it handles the communication with Lotus Notes. This
happens via a Windows program library, a so-called DLL file (Dynamic Link Library), which is
one of the essential buildings blocks in Microsoft Windows.

ERP2LN.DLL is what is termed an "API" by programming specialists (Application
Programming Interface), i.e. a program-based entry to a program.

In principle, ERP2LN.DLL functions as if the workstation was linked to Lotus Notes as an
ordinary user.

15.2 COM-object ERPZIN COM.DLL

Since NAV has a limited way of utilizing external functionality (outside NAV), a “wrapper” for
‘ERP2LN.DLL” has been made. The wrapper does not change the way “ERP2LN.DLL”
works, it only adds another way to use it.

A NAV programmer has the option to use an automation object in the NAV code. The COM-
object supports this type and can therefore be used by the programmer as any other
automation object.

1.6 Training

A high level of training is not required in order to use INTOGRATE Developer. A course will
typically comprise the following areas:

1. The principles applying to the integration between NAV and Lotus Notes

2. Integration kit commands

3. Relevant Lotus Notes tools

4. Integration case in which a NAV application element is integrated with a Lotus Notes
database.

The duration of the course depends on the participants' basic knowledge of Lotus Notes and
the NAV development environment, and on the level of detail required in the discussion of
the integration case.

2. Program installation

INTOGRATE should normally be installed from a workstation where Lotus Notes and NAV
clients are installed. All descriptions and tasks are based on the assumption that they are
carried out from a local workstation.

2.1 Before you start

2.11 System requirements
The following software is necessary:

e Microsoft Windows Workstation/Server, NT, 2000, XP, Vista, Windows 7, Windows 8.

e Lotus Notes client version 5.02¢ or newer

e Microsoft NAV Attain DK 3.60, Microsoft Business Solutions-NAV DK 3.70, Microsoft
Business Solutions-NAV DK 4.0, Microsoft Dynamics NAV 5.0, Microsoft Dynamics
NAV 2009 or Microsoft Dynamics NAV 2013/2015/2016 (NAV 2016 in 32 bit client).

2.2 Check list

Before you begin the installation of INTOGRATE, it is recommended that you do the
following. This may prevent potential problems not related to the integration kit itself.

e Start your local Lotus Notes client and logon with you password if required. If any errors
occur at this stage, make sure to solve them before you use the integration kit.

¢ In Lotus Notes, open the databases that you plan to access from NAV. This ensures that
you have the proper access rights.

e Start NAV and make sure that you have a valid user name and password for NAV. Do not
forget to close NAV before you continue with the installation.

e If you need e-mail capabilities: Start your local Lotus Notes client. Use the shortcut key
<CTRL>+<M> to create a new e-mail. If an error occurs at this point, this must be fixed
before the installation of INTOGRATE can continue. A correctly set-up Lotus Notes e-
mail client from which e-mails can be sent is a prerequisite.

2.3 Installation of INTOGRATE

Insert the CD called “INTOGRATE NAV — Developer”. If the installation program does not
start automatically, double-click "setup.exe” in the root of the CD (Click 'Run’ in the Windows
Start menu and type "D:\setup.exe” if the CD-ROM drive is the D-drive).

Follow the installation guidelines on the screen. For a detailed description of the installation,
see the whitepaper “Technical Guidance - INTOGRATE NAV.pdf”.

2.4 License file

To use INTOGRATE a license file must be installed.

This file can be obtained either by purchasing a license for INTOGRATE or by downloading a
demo version from our website (http://www.intograte.com).

The license file must be copied to the directory where the product was installed (the directory
where "erp2In.dil" is located).

2.5 Installation in NAV

When INTOGRATE has been installed (as described in the previous section) it can be used
in NAV with no need for further installation. Simply declare an automation variable in your
NAV code that points to the ERP2LN COM-object (see the next section for a detailed
description).

2.6 Installation in Lotus Notes

Usually there is no need to install anything in Lotus Notes. However, if there are plans to
send reports and/or links by email from NAV a minor change may be required in Lotus Notes
(depends on Lotus Notes and NAV version). For instructions on installing this modification,
see the document “Manual - INTOGRATE NAYV - Reports by e-mail.pdf’.

All security is controlled by Lotus Notes. The integration kit will have the same privileges as
the currently selected user-id in Lotus Notes.

It is not a requirement that the Lotus Notes client is running on the workstation for NAV to
communicate with Lotus Notes. Starting Lotus Notes before using the integration kit is,
however, recommended.

2.6.1 Avoid promptings for password

Since NAV uses the local Lotus Notes client for e.g. sending e-mails, the user will be
prompted for a password for Lotus Notes when starting NAV regardless of whether the Lotus
Notes client has been started or not. This can be changed so that the entering of a password
is not necessary if the Lotus Notes client has already been started. Start your Lotus Notes
client and select the menu ’File\Tools\User ID’. Mark 'Don't prompt for a password from other
Notes-based programs...” Close the dialog box by clicking [OK]. After this, the user will not
be prompted for a Lotus Notes password when starting NAV. (However, this requires Lotus
Notes to be running in the background and the user to be logged in).

2.6.2 Disable visilile notification

Lotus Notes is locked when a message indicating that new mail has arrived is being
displayed. The integration kit can thus not access Lotus Notes as long as the message is
shown.

To circumvent this it is recommended that visible notification in Lotus Notes is disabled. This
can be done from the menu ’File\Preferences\User preferences...’. Select the 'Mail and
News’ icon on the left side of the dialog box. Deselect 'Visible Notification’ in the 'Receiving’
section.

10

2.6.3 Precautions with lotus Notes changes

Generally, INTOGRATE uses the current setup of the Lotus Notes Client. It reads most setup
information in the active location document (Office, Island, Home etc.).

This means that if the current location document is Island, INTOGRATE will not be able to
connect to any Lotus Domino servers.

If changes are made in the location document or a new location is selected (Office, Island,
Home etc.), make sure to restart both Notes and NAV. This is also the case when switching
user id.

11

J. Getting started

Before an in-depth description of the facilities is given, a small case will be presented in this
section illustrating how the kit functions and can be used.

The case should primarily be regarded as an example of the principles of integration. The
case is fully operational, but, for example, error handling is not incorporated.

To use error-handling see section 4.6 Error handling0 on page 28.

3.1 Installing the Customer database

The installation case contains a template for creating a simple customer database in Lotus
Notes. This can be found in the installation directory (typically “C:\Program Files\
INTOGRATE NAV\Documentation\case”).

The database is created as follows:

1. Copy the file “Customers.ntf’ from the "case” directory to your local Lotus Notes client
data directory (ex. “C:\Program Files\lotus\notes\data”).

2. Start up your Lotus Notes client (if it is already running you might need to restart it).
3. Create a new database [CTRL] + [N].
4. Fill out the dialog as shown below.
5. ltis important that "Customers CASE" is specified as Template.
6. Select OK.
Mew Application E @
Specify New Application Name and Location
Sever Local -
Title Customers Cancel
File name Customers.nsf g
Encryption...
[] Create full text index for searching Advanced. ..

Specify Template for New Application

Server -
< -Blank- -
< -Blank Composite Application- =
o

Template e

m Application Library (8)
m Design Synopsis
m Discussion - Motes & Web (9) -

File name Customers nif About...

[7] Show advanced templates

Inherit future design changes

12

3.2 NAV code

Start by creating a new code unit and add the following local variables:

Name Data type Subtype Length
ERP2LN Automation 'ERP2LN_COM Library. COM Wrapper
for ERP2LN.DLL.ERP2LNCOM
Customer Record Customer
CommentLine Record Comment Line
strDocld Text 10

To add the automation object, use this procedure:

Browse the subtypes.

S S

Browse the automation servers.
Select “ERP2LN_COM Library...” and click [OK].
A list of available objects is displayed. Select ERP2LNCOM library (see below)
Click OK to activate your choice.

-

-

OnRun - C/AL Locals

Variables | Text Constants

MName
b |ERP2LN

DataType
Automation

Subtype

4

1

& Automation Object List [= =] =]
Automation Server . . .
Classes
-
Automation Server List EI@

ERP2LN_COM Library, COM Wrapper for ERP2LN.DLL 1.0

EasyZapperManagerExe 2.7 Type Library 2.7
EmailObject 1.0 Type Library 1.0
Embarcadero Common Tasks Assembly 14.0 a
Embarcadera Commaon Tasks Assembly 16.0
Embarcadera Database Explarer 14.0
Embarcadero Database Explorer 16.0
Embarcadero Database Explorer Common 14.0
Embarcadera Database Explorer Comman 16.0
Embarcadero RAD Studio Interop Assembly 14.0
Embarcadera RAD Studio Interop Assembly 16.0
Embarcadere RAD Studio ToolsAPT Assembly 14.0
Embarcadero RAD Studio ToolsAPT Assembly 16.0 | =
[OK.] [Cancel] [Help]
TR I

13

Use cut-and-paste to copy the following code into a new code unit in NAV.

CREATE (ERP2LN) ;
IF NOT ERP2LN.Init('Attain@' + SERIALNUMBER, 0) THEN
BEGIN

ERROR ('NotesInit error %$1', ERP2LN.ErrorCode) ;

END;
ERP2LN.TruncateReturnString (1023) ;

ERP2LN.OpenServer ('Local') ;
ERP2LN.Logon ('Customers.nsf');

ERP2LN.Form := 'CustTable';
ERP2LN.View := 'CustTable';
IF NOT Customer.FIND('-') THEN EXIT; // No records found
REPEAT
strDocId := ERP2LN.SearchView (Customer."No.");
IF STRLEN (strDocId) = 0 THEN

BEGIN // Customer not found
ERP2LN.CreateNew (FALSE) ;
END;

ERP2LN.FieldValue ('AccountNumber', Customer."No.");
ERP2LN.FieldValue ('Name', Customer.Name) ;

ERP2LN.FieldValue ('Address', Customer.Address);
ERP2LN.Fieldvalue ('City', Customer.City);

ERP2LN.FieldValue ('ZipCode', Customer."Post Code");
ERP2LN.FieldValue ('Country', Customer."Country/Region Code");
ERP2LN.FieldValue ('Attention', Customer."Name 2");
ERP2LN.FieldValue ('Phone', Customer."Phone No.");
ERP2LN.FieldValue ('Fax', Customer."Fax No.");

Customer.CALCFIELDS (Balance) ;
ERP2LN.FieldValue ('Balance', FORMAT (Customer.Balance, 0, 2));

CommentLine.SETFILTER ("Table Name", 'Customer');
CommentLine.SETFILTER ("No.", Customer."No.");
IF CommentLine.FIND('-"') THEN
BEGIN // Found one or more comment lines
ERP2LN.FieldValue ('Comments', FORMAT (CommentLine.Date) + ' ' + CommentLine.Comment) ;
WHILE CommentLine.NEXT <> 0 DO
BEGIN // For each subsequent line append it to the item
ERP2LN.AppendTextList ('Comments', FORMAT (CommentLine.Date) + ' ' +
CommentLine.Comment) ;
END;
END;

ERP2LN.Commit () ;

UNTIL Customer.NEXT = 0;

Save and execute the above code unit. This will create all the customers in NAV in the Lotus
Notes database “Customers.nsf”. If the code unit is executed more than once, it will simply
update existing customers in Lotus Notes.

14

3.3 Example walkthrough
First, the object used for communication with Lotus Notes is prepared:

CREATE (ERP2LN) ;
IF NOT ERP2LN.Init ('Attain@' + SERIALNUMBER, 0) THEN
BEGIN

ERROR ('NotesInit error %1', ERP2LN.ErrorCode) ;
END;

Handle the limitation of a maximum of 1024 characters in any returned result in NAV:

ERP2LN.TruncateReturnString (1023) ;

Define the server to log on to (in this case log on to the local workstation):

ERP2LN.OpenServer ('Local') ;

Log on to a database on the local workstation:

ERP2LN.Logon ('Customers.nsf');

Specify the design-elements to use (usually required):

ERP2LN.Form := 'CustTable';
ERP2LN.View := 'CustTable';

Locate the first Customer in NAV (exit if no records found)

IF NOT Customer.FIND('-') THEN EXIT; // No records found

The repeat statement simply iterates all the customers in NAV.

In the repeat statement the first thing done is to search for the customer in Lotus Notes. If the
customer record is not found it will be created by a call to the CreateNew:

strDocId := ERP2LN.SearchView (Customer."No.");
IF STRLEN (strDocId) = 0 THEN
BEGIN // Customer not found
ERP2LN.CreateNew (FALSE) ;
END;

If the document was found by SearchView it will automatically be active in the ERP2LN
object. This means that the next methods and properties called will work on this document.

The next block of code sets information on either the new document created by CreateNew
or an existing found by SearchView.

ERP2LN.FieldvValue
ERP2LN.FieldValue

("AccountNumber', Customer."No.");

("Name', Customer.Name) ;

ERP2LN.FieldValue ('Address', Customer.Address);
ERP2LN.FieldvValue ('City', Customer.City);

ERP2LN.FieldValue ('ZipCode', Customer."Post Code");
ERP2LN.FieldvValue ('Country', Customer."Country/Region Code");
ERP2LN.FieldValue ('Attention', Customer."Name 2");
ERP2LN.FieldValue ('Phone', Customer."Phone No.");
ERP2LN.FieldValue ('Fax', Customer."Fax No.");

15

When transferring other values than text, they must first be converted. These lines first
calculate the flow field “balance” and then convert it to text before updating the “Balance”-
field on the document in Lotus Notes.

Customer.CALCFIELDS (Balance) ;
ERP2LN.FieldValue ('Balance', FORMAT (Customer.Balance, 0, 2));

To add large text content to Lotus Notes an option is to create multi value items (several
items with the same name in Lotus Notes) the method AppendTextlList is used in
combination with FieldValue to accomplish this:

CommentLine.SETFILTER ("Table Name", 'Customer'):;
CommentLine.SETFILTER ("No.", Customer."No."):;

IF CommentLine.FIND('-"') THEN
BEGIN // Found one or more comment lines
ERP2LN.FieldValue ('Comments', FORMAT (CommentLine.Date) + ' ' 4+ CommentLine.Comment) ;

WHILE CommentLine.NEXT <> 0 DO
BEGIN // For each subsequent line append it to the item
ERP2LN.AppendTextList ('Comments', FORMAT (CommentLine.Date) + ' ' + CommentLine.Comment);
END;
END;

16

4. Using INTOGRATE Developer

This section describes in more detail how to use the integration kit from NAV. For a complete
reference of all methods and properties in the integration kit please see appendix 1.

All examples assume that the integration kit has been declared as the automation object
‘ERP2LN’ (see section 3.2 for an example).

4.1 Calling methods and properties

The integration kit works as any other automation object in NAV. This means that after it has
been declared as a variable, properties and methods can be called the usual way.

The most typical way of using the automation object is like this (assuming that you declared
the automation object as “ERP2LN"):

CREATE (ERP2LN) ;
IF NOT ERP2LN.Init ('Attain@' + SERIALNUMBER, 0) THEN
BEGIN

ERROR ('NotesInit error %1', ERP2LN.ErrorCode) ;
END;

A useful function in NAV is the C/AL Symbol Menu where you can browse the accessible
methods and properties of any automation object. This function can be activated by clicking
[F5] or using the menu “View\C/AL Symbol Menu” while in the source code.

4.2 Connecting to Lotus Notes

Some of the integration kit commands concern the creation and closing of Lotus Notes
sessions. Other commands are for the selection of application elements in Notes.

When |Init is called from NAV, it must have the following syntax (this only changes if it is
called from others systems such as Axapta, XAL etc.):

ERP2LN.Init ('Attain@' + SERIALNUMBER, O0);

The SERIALNUMBER is a global method in NAV which returns the licensed serial number.

The Init method creates a link between NAV and the DLL library handling the system calls to
Lotus Notes. This method must be called before any other integration methods can be used.
Calling the method more than once will not have any effect (subsequent calls will be
ignored).

421 Setting server and database

Before any connection is made a server name must be set. This is done by calling
OpenServer.

To connect to the local machine, use:

ERP2LN.OpenServer (‘Local’) ;

Connecting to a server is done in the same way. This example connects to the server
Serverl/Acme:

17

ERP2LN.OpenServer (‘Serverl/Acme’) ;

Having set the server name, you can log on to a database. This is done by calling Logon:

ERP2LN.Logon ('Customers.nsf');

If the current user does not have access to this database or the database does not exist an
error occurs. The system might also ask for the user’s Lotus Notes password depending on
the configuration (the password prompt is only requested once per NAV session). To disable
the password prompt, see section 2.6.1.

The name of the database must be relative to the Notes Data directory.

4.2.2 Setting form and view

A Lotus Notes form describes the fields associated with a document and it must always be
set.

An example is the ‘Memo’ form that describes all the fields on an e-mail in Lotus Notes:

ERP2LN.Form := 'Memo';
When the form is set a check is performed to verify if it exists in the currently selected
database (set by calling Logon).

If you are using the lookup and query methods, a view must be selected. Call the property
View to do this. A few examples:

ERP2LN.View :
ERP2LN.View :

‘CustTable’;
Y (SALlLl) '

4.2.3 Switching sessions

It is possible to operate with multiple sessions. Each session has its own connection to Lotus
Notes, with server, database, form, view, current document etc.

18

To change between sessions, use the property ActiveHandle.

// Start by using default handle 1
ERP2LN.OpenServer ('Serverl/Acme"') ;
ERP2LN.Logon ('Customers.nsf') ;

ERP2LN.Form := 'CustTable';
intOriginalHandle := EPR2LN.ActiveHandle; // Save current handle
EPR2LN.ActiveHandle := 1; // Operate on a new handle

. Work on handle 1

EPR2LN.ActiveHandle := 2; // Operate on a new handle
ERP2LN.OpenServer ('Server2/Acme"') ;

ERP2LN.Logon ('Creditors.nsf');

ERP2LN.Form := 'CustTable';

. Work on handle 2

EPR2LN.ActiveHandle := 1; // Switch back to handle 1

. Work on handle 1

EPR2LN.ActiveHandle := intOriginalHandle; // Return to original handle

Be cautious when using multiple sessions. Confusion about which session is active is often
responsible for errors.

4.3 Queries and lookup

4.3.1 Selecting a single document

For selecting a single document in Lotus Notes based on a unigue key, the properties UNID
and Docld can by used.

Often there is a need to store a unique key for a Lotus Notes Document in NAV. The only
real unique key for a document in Lotus Notes is the Universal ID (also known as UNID). The
UNID is a 32-character long hexadecimal string that uniquely identifies a document (across
servers and databases).

The Docld is only unique in one database and should never be used for storing references to
documents (It is not even unique across replicas of the same database). You only need
Docld when using methods like SearchView, SearchNext and Query which all return Doclds.

19

A scenario for using the UNID could be that a customer record in NAV should have a link to
its equivalent document in Lotus Notes. An example:

ERP2LN.OpenServer ('Local') ;
ERP2LN.Logon ('Customers.nsf') ;
ERP2LN.Form := 'CustTable';

IF NOT Customer.GET ('60000') THEN ERROR('Customer not found!');
ERP2LN.UNID := Customer."NotesUNID"; // Lookup the document in Lotus Notes
IF ERP2LN.Error THEN ERROR('Document not found!');

MESSAGE (ERP2LN.FieldValue ('Name')) ;

4.3.2 OQueries

The method Query is used for execution of standard Notes queries. The selection criterion is
specified as a parameter. The Parameter can be compared to "View selection" in Lotus
Notes. In order to use this method, some knowledge of Lotus Notes is required.

Here are some examples of calling the method:

// returns all documents in the database.
intDocsFound := ERP2LN.Query (‘SELECT @ALL’);

// Return all documents with a quantity higher than 100.
intDocsFound := ERP2LN.Query (‘SELECT Quantity>100");

By using the Query method, very flexible searches in Lotus Notes can be performed. But this
method uses full-text queries in Lotus Notes and in large databases this method can be quite
slow. An alternative lookup method is available in the method SearchView (see section 4.3.3
Iterating documents in a view).

To go through the result use the MoveFirst, MoveNext, MovePrev and MovelLast methods.
The following example searches for all customers from Germany (DE). It then iterates and
displays each customers name:

ERP2LN.OpenServer ('Local') ;
ERP2LN.Logon ('Customers.nsf');
ERP2LN.Form := 'CustTable';

intDocsFound := ERP2LN.Query ('SELECT Country="DE"');
MESSAGE (‘Found ’ + FORMAT (intDocsFound) + ' documents.’);

IF intDocsFound > 0 THEN
BEGIN
ERP2LN.MoveFirst(); // Prepare first document
REPEAT
MESSAGE (ERP2LN.FieldValue ('Name')
UNTIL STRLEN (ERP2LN.MoveNext ()) = 0
END;

) i

4.3.3 Iterating documents in a view by key(s)

The Query method uses full text searches which in many cases are relatively slow. To speed
up iterating documents in Lotus Notes, views are typically used. A view with an index is
comparable to a standard relational database in the sense that it is possible to use keys as
criteria for which documents to iterate.

There are a few requirements of a view in Lotus Notes. First of all there must be at least one
sorted column (a sorted column represents a key/index) and the sorted columns must be of
type text. If a sorted column is not text, this can usually be fixed by creating a new view
where the non-text value is converted using the “@Text()” formula.

20

To use more than one key (if there is more than one sorted column), simply separate the
keys with ‘;’ (the delimiter can be changed through the property KeyDelimiter).

The method SearchView is used for searching views. The method returns the first document
that matches the search key(s). To iterate results from SearchView, use the method
SearchNext.

The following example will iterate all documents in Lotus Notes where country is “DK” and zip
code is “DK-8000":

ERP2LN.OpenServer ('Local') ;
ERP2LN.Logon ('Customers.nsf');
ERP2LN.Form := 'CustTable';

ERP2LN.View := 'CustomersByCountryAndZipCode';

strDocId := ERP2LN.SearchView ('DK;DK-8000") ;
WHILE (StrLen (strDocId)) > 0 DO
BEGIN
ERP2LN.GetFieldValue ('Name', strName) ;
MESSAGE (strName) ;

strDocId := ERP2LN.SearchNext () ;
END;

If only documents where Country matches “DK” are needed, simply call SearchView like this:

strDocId := ERP2LN.SearchView ('DK") ;

The number of sorted columns does not matter. The only requirement is that the supplied
search key never contains more values than there are sorted columns in the Lotus Notes
view.

4.34 Iterating all documents in a view

To iterate all documents in a view the method SearchFirst combined with SearchNext are
used. The procedure is very similar to that of iterating a view by keys.

The following example will iterate all documents in the Lotus Notes view “CustTable”:

ERP2LN.OpenServer ('Local');
ERP2LN.Logon ('Customers.nsf');
ERP2LN.Form := 'CustTable';

ERP2LN.View := 'CustTable';

strDocId := ERP2LN.SearchFirst();

WHILE (STRLEN (strDocId)) > 0 DO

BEGIN
ERP2LN.GetFieldValue ('Name', strName);
MESSAGE (strName) ;

strDocId := ERP2LN.SearchNext () ;
END;

21

4.4 Data manipulation

After establishment of a Lotus Notes session and maybe selection of a document for
processing, data can be processed by means of different methods. These methods make it
possible to create, edit or delete documents.

4.4.1 Creating amd saving documents

The method CreateNew creates a new empty document in Lotus Notes. After a call to
CreateNew the field values can be read and written using the methods described in section
4.4.2 Reading and setting values.

If the parameter for CreateNew is set to true, the new document will be saved immediately;
otherwise it will not be saved until Commit is called.

Whenever a document has been modified it must be saved in Lotus Notes. This is done by
calling Commit or CommitWithForm.

CommitWithForm will compute any “Computed Values” and execute formulas defined on the
document’s associated form. This is very similar to saving a document in the Lotus Notes
client. It is considerably slower than Commit.

Commit saves all changes to the document. It does not execute any formulas or calculate
any computed values.

If NEITHER method (Commit and CommitWithForm) is called, no changes are saved.

An example of using Commit can be found in section 3.2.

442 Reading and setting values

To get and set document values in Notes, use the method GetFieldValue to read data and
the property FieldValue to write data. It is also possible to use the property FieldValue to
read data, but NAV has some length issues that make it unsuitable for this purpose (they will
be discussed later in this section).

All data sent and received through INTOGRATE must first be converted to text. When
INTOGRATE receives the text it will automatically convert it to the appropriate data type in
Lotus Notes (based on the active form).

A simple example of reading and writing values from the active document:

// Write a value in the Lotus Notes item “Name”
// using the value “Name” in the Customer table.
ERP2LN.FieldValue ('Name', Customer."Name");

// Read a value into local variable “strAccountNumber”
// from the Lotus Notes item ‘AccountNumber’ .
ERP2LN.GetFieldValue ('"AccountNumber', strAccountNumber) ;
MESSAGE (strAccountNumber) ;

Since Lotus Notes is not a relational database a document can have items that are not
described on the associated form. To read and write these items the method GetltemValue
and property ItemValue must be used.

When using these methods INTOGRATE makes no attempt to verify if the given item exists
on the selected form (no “data dictionary” check is performed). If possible, always use the
method GetFieldValue and property FieldValue to get and set values.

When setting an item with the property ItemValue, the data type will be decided based on the
following scenarios:

22

1. If the item name has a post-fixed data type this will be used (see later in this section
for a description).

2. If the item exist on the document’s form (it is defined in the design of the form in Lotus
Notes) the specified data type of that field will used as data type. If, for example, an
item named “Balance” exists on the form with type number, the stored value in Lotus
Notes will be of type number.

3. If none of the above situations apply the data type will be text.

It is possible to force a specific data type regardless of what is defined on a form in Lotus
Notes. Any item name can have a data type post-fixed like this:

ERP2LN.ItemValue (' #NUMBER#Balance', Customer."Balance");

Details on the data types can be found in the development reference list in the section about
the property ltemValue.

When the property IltemValue or FieldValue is used for reading data, no returned string may
ever exceed 254 characters (again, a limitation in NAV). If the size is exceeded NAV will
generate an error (that cannot be caught). To handle returned values larger than 254
characters use GetltemValue and GetFieldValue instead.

4.4.2.1 Large text content

To transfer large amounts of text (more than 1024 characters) from NAV to Lotus Notes the
method AppendltemValue can be used.

The following example sets the initial value using the property FieldValue and then calls
AppenditemValue for each block of text.

ERP2LN.FieldValue ('Name', 'FirstBlock');
ERP2LN.AppendItemValue ('Name', 'SecondBlock');
ERP2LN.AppendItemValue ('Name', 'ThirdBlock');

The resulting value in the “Name” item will be “FirstBlockSecondBlockThirdBlock”.

Beware that if the item being set is configured as a multi-value item, any presence of a
delimiter in the value will be treated as a multi-value separator. The default delimiter is a

semicolon “” and it can be changed using the property ListDelim.

4.4.2.2 Text lists and multi-value items

To create text lists in Lotus Notes use the methods AppendTextList. Text lists are also
referred to as multi-value text in Lotus Notes.

The following example creates a text list with 3 members:

ERP2LN.FieldValue ('Name', 'FirstTextElement');
ERP2LN.AppendTextList ('Name', 'SecondTextElement');
ERP2LN.AppendTextList ('Name', 'ThirdTextElement');

To set data types other than text use AppendltemValue and separate the multi-values with a
semi colon (or the delimiter configured using the ListDelim property).

This example assumes that a field named “DateList” is configured on the active form. The
field is set as multi-value and must contain date/time values.

ERP2LN.FieldValue ('DateList', FORMAT (TODAY, 0, '<Day,2>-<Month,2>-<Yeard>"));
ERP2LN.AppendItemValue ('DatelList', ';' + '31-12-1999'");
ERP2LN.AppendItemValue ('DatelList', ';' + '31-12-2000");

The result will be three multi-values of type date in the item named “DateList”. It is possible to
call AppenditemValue with several values:

23

ERP2LN.AppendItemValue ('DatelList', ';31-12-1999;31-12-2000;31-12-2001");

NAV does not understand multi-values in the same way as Lotus Notes does. When
requesting such values from Lotus Notes, the values are returned delimited by semicolon (or
another delimiter set by the property ListDelim).

4.4.2.3 Date/time format

All date and time values must have a special format before they are transferred to the
integration kit.

Depending on whether both date and time are needed use the following table to decide on
the format:

Format NAV format expression
Date only dd-mm-yyyy <Day,2>-<Month,2>-<Year4>
Time only hh:mm:ss <Hours24,2><Filler Character,0>:<Minutes,2>:<Seconds,2>
Date and time dd-mm-yyyy Above to expressions separated with a whitespace.
hh:mm:ss
4.4.2.4 Number format

Any type of numbers transferred to Lotus Notes must be converted to text using the method
FORMAT like this:

Customer.CALCFIELDS (Balance) ;
ERP2LN.FieldValue ('Balance', FORMAT (Customer.Balance, 0, 1));

The above example assumes that the format type 1 is correctly configured. Format 1 should
be specified as this NAV expression:

<Sign><Integer><Decimals><1000Character,,>

4.4.3 Deleting documents

The integration kit provides two methods for deleting documents in Lotus Notes. These are
DeleteDocumentByID and DeleteCurrentDocument.

DeleteCurrentDocument simply deletes the active document and DeleteDocumentBylD
deletes a document by its id (Docld).

After deletion of a document via DeleteCurrentDocument, a new current document must be
selected before further data manipulation can be done.

444 File attachments

The integration kit has various methods for handling attachments in Lotus Notes. These
methods include attaching, detaching and deleting file attachments.

Files are attached to a Notes document via the method AttachFile. This method takes to
parameters, a flename and optionally an attachment name. The first parameter specifies the
file to attach (usually the full path to the file) and the second parameter, if set, decides the
attachment name on the document.

If no other attachment name is specified, the attachment will be created with the same name
as the file (excluding preceding path).

24

DetachFile works in the same way except that the filename is the resulting location of the
attachment and the attachment name is the attachment to detach.

This simple example creates an attachment and immediately detaches it:

ERP2LN.AttachFile ('c:\temp\report.doc', 'Annual report.doc');
ERP2LN.DetachFile ('c:\temp\Annual report 2006.doc', 'Annual report.doc');

Beware that calling DetachFile will always overwrite any existing file.

To delete an attachment use the method DeleteAttachment. An example:

ERP2LN.DeleteAttachment ('Annual report.doc');

This will delete the previously attached file “Annual report.doc”.

To delete all attachment to the current document call DeleteAttachAll.

When deleting attachments placed in rich-text items the icon representing the attachment is
not removed.

4.5 Mail

There are several methods and properties in the integration kit that enable the sending of e-
mails via the Lotus Notes client with and without user interaction.

Contrary to normal access to databases in Lotus Notes, mail actions do no require the user
to call any of the methods Logon, OpenServer, CreateNew etc. This is done automatically
based on the current user’s mail setup in Lotus Notes.

When creating and sending e-mails the following steps are usually taken:

1. Define the receivers and the subject of the e-mail (this optionally includes any cc
and/or bcc receivers).

2. Build the body content of the mail.

3. Attach one or more files.

4. Send the mail in the background or open it in the Lotus Notes client.

4.5.1 Receivers and sulject

To add receivers to the “To” field call MailSendTo. To set the “CC” and “BCC” fields use
MailCC and MailBCC. These methods take one parameter containing one or more mail
addresses (separated by a comma). Calling any of these methods more than once will result
in a append operation (existing mail addresses will not be overwritten).

Use the property MailSubject to set the subject of the mail.

This example sets the “To”, “CC” and Subject of the next mail to send.

ERP2LN.MailSendTo ('john@acme.com, jane@acme.com') ;
ERP2LN.MailCC(‘joe@acme.com') ;

ERP2LN.MailCC (‘carol@acme.com'); // Append’s to joe@acme.com
ERP2LN.MailSubject := 'January Newsletter 2006';
4.5.2 Body content

Setting the body content can be done in two ways either by using the simple method
MailBodyText or the more complex methods MailBody and MailBodyFile. The first method
can be used for text mails only (ASCII text). The second methods are used when the content
needs to be formatted and possibly contain pictures (Lotus Notes rich text).

25

To create simple body content comprising only text, call MailBodyText one or more times.
The following example builds up a body:

strName := 'John';
ERP2LN.MailBodyText ('Dear ' + strName);
ERP2LN.MailBodyText (''); // Empty line
ERP2LN.MailBodyText ('We are pleased....');
ERP2LN.MailBodyText (''); // Empty line
ERP2LN.MailBodyText ('Kind regards...');

To build a more complex mail body containing for example both text and embedded pictures
use MailBody and MailBodyFile.

The following example will accomplish the same as the above example but there will be a
logo appended to the mail body:

ERP2LN.MailBody ('Dear ' + strName) ;

ERP2LN.MailBody (''); // Empty line
ERP2LN.MailBody ('We are pleased....');
ERP2LN.MailBody(''); // Empty line

ERP2LN.MailBody ('Kind regards...');
ERP2LN.MailImportBodyFile ('c:\temp\logo.jpg');

The method MaillmportBodyFile can be used for several types of import. Most formats
supported by Lotus Notes are also supported by MaillmportBodyFile. To make sure the
import works as expected, try sending a test mail to yourself before sending to other
recipients.

The formats supported are always dictated by the installed Lotus Notes client.

4.5.3 Attach files

Attaching files to a mail works as attaching files to an ordinary document in Lotus Notes. To
attach a file to the current mail call MailAttachFile.

This example attaches “c:\temp\report.doc” to the mail:

ERP2LN.MailAttachFile ('c:\temp\report.doc', 'Annual report.doc');

MailAttachFile can be called several times to attach more than one file.
For more details see the 4.4.4 File attachments section found on page 24.

4.5.4 Sending a mail

When the mail has been prepared (setting recipients, subject, body and adding attachments)
it can be sent either in the background or with user interaction.

To send backend (no user interaction) simply call MailSend. This is demonstrated in this
example:

ERP2LN.MailSendTo ('johnlacme.com') ;

ERP2LN.MailSubject := ‘January Newsletter’;
ERP2LN.MailBodyText ('Dear John');

ERP2LN.MailBodyText (''); // Empty line
ERP2LN.MailBodyText ('We are pleased....');
ERP2LN.MailBodyText (''); // Empty line
ERP2LN.MailBodyText ('Kind regards...');
ERP2LN.MailSend(‘'’); // Send the mail in the background

(
(
(
(

To allow the user to edit the mail before sending it call MailCompose instead of MailSend.
This will open the mail in Lotus Notes for editing. If recipients, subject etc. are set, these will
automatically be filled in. MailCompose does not wait for the user to send the mail, it returns

26

immediately. To get a reference to the mail call MailCompose with the parameter set to true
(if the mail is not sent it will remain as a Draft mail in Lotus Notes).

4.5.4.1 Mail signature

In Lotus Notes a user has the option to append a signature to each mail. If this has been
enabled it will also be honoured when sending mails from the integration kit.

To disable this feature set the property MailAppendSignature to false.

4.5.5 Automatic Error Messages by e-mail

The integration kit has a facility by which messages about errors occurring in connection with
integration are mailed to e.g. the IT-responsible. This may facilitate internal support as the
mail contains most of the relevant information. This facility is especially well suited when
using the integration kit on a batch server where error messages may not necessarily be
seen immediately.

The facility is activated by the method MailOnError in which the receiver is specified as a
parameter. More receivers can be specified, separated by commas.

To enable this facility use the following code:

ERP2LN.MailOnError := ‘john@acme.com’;

To disable the feature simply call it like this:

ERP2LN.MailOnError := ‘';

Beware that if the mail setup in Lotus Notes is incorrect, this function will not work.

27

4.6 Error handling

Using error handling is usually recommended. Consider the following code example:

CREATE (ERP2LN) ;
ERP2LN.Init ('Attain@' + SERIALNUMBER, O0);

Some other NAV code

If Init fails in the above example the NAV code following is still executed.

To avoid this, use the return value of Init to see if it was successful. In many cases a method
returns either true or false indicating success or failure. It is also possible to read the property
Error after a call to a method or property. If Error is true use the property ErrorText and
ErrorCode to get more details of the occurred error.

See the developer reference in appendix 1 for details on the different error codes.

An example that shows different kinds of error handling:

CREATE (ERP2LN) ;
IF NOT ERP2LN.Init ('Attain@' + SERIALNUMBER, 0) THEN
BEGIN

ERROR ('NotesInit error %$1', ERP2LN.ErrorCode);
END;

ERP2LN.OpenServer ('Local');

IF NOT ERP2LN.Logon ('Customers.nsf') THEN

BEGIN

ERROR ('Could not open the Customers database on database Local!');
END;
ERP2LN.Form := 'CustTable2';

IF ERP2LN.Error THEN ERROR('Failed to open the form!');

28

Appendix 1. Developer reference (API]

The following terminology is used in this appendix:

Name of method or property

Symtax
<Details on parameters, data types and return value>

Parameters

<parameter name>
<Description of parameter>
<next parameter name>
<Description of parameter>

Return Value
<Description of the value returned by the property or method>

Description
<General description of the method or property>

Example
<Examples of usage>

Errors

<Description of possible errors generated by this method or property. Usually in the

format:>

<ErrorCode> - <ErrorText>
<ErrorCode 2> - <ErrorText 2>

29

Symtax
property ActiveHandle : integer (read/write)

Return Value
The active handle.

Description
Get/set the active handel of the current session.

Example
The following example shows how to temporary change the active handle.

ERP2LN.ActiveHandle := 2;

ERP2LN.OpenServer ('dominol/acme"') ;
ERP2LN.Logon ('department.nsf');

ERP2LN.DocId := 'OFDD'; // Select a document

ERP2LN.ActiveHandle := 3; // Change handle
ERP2LN.OpenServer ('dominol/acme"') ;
ERP2LN.Logon ('department.nsf');

// Do work on another handle

ERP2LN.ActiveHandle := 2; // Switch back

Errors
99 - General error - for more details see the error log.

30

Symtax
property ActiveHandle : integer (read/write)

Return Value
The active handle.

Description
Get/set the active handel of the current session.

Example

The following example shows how to temporary change the active handle.

ERP2LN.ActiveHandle := 2;

ERP2LN.OpenServer ('Local');

ERP2LN.Logon ('Customers.nsf');

ERP2LN.Form := 'CustTable';

ERP2LN.View := 'CustTable';

ERP2LN.SearchView ('60000"); // Lookup customer
strSalesPersonCode := ERP2LN.FieldValue ('SalesPersonCode');

ERP2LN.ActiveHandle := 3; // Change handle
ERP2LN.OpenServer ('Local') ;

ERP2LN.Logon ('Customers.nsf');

ERP2LN.Form := 'Employee';

ERP2LN.View := 'Employee';

ERP2LN.SearchView (strSalesPersonCode); // Lookup employee
MESSAGE (ERP2LN.FieldValue ('Name')) ;

ERP2LN.ActiveHandle := 2; // Switch back

Errors
99 - General error - for more details see the error log.

31

Symtax
function AddQueryField(argFieldName: string) : boolean

Parameters
argFieldName
Name of a valid field on the currently selected form.

Return Value
True if the method succeeded; false otherwise.

Descrintion

Specifies, that this Notes field should be included among the fields whose values is written
to the comma separated file at call to Query.

Fields are included in the file in the order they are entered by AddQueryField.

Example
The following example adds two fields and executes a query.

ERP2LN.ClearQueryFields () ;
ERP2LN.AddQueryField ('Number') ;
ERP2LN.AddQueryField ('Name') ;
ERP2LN.Query ('Nummer>''100""");

Errors

1 - Field is not defined on current form.

2 - No form selected.

3 - No active document or no fields on form found.

4 - Maximum number of search fields exceeded.

99 - General error - for more details see the error log.

32

Symtax
function AppendltemValue(argltemName: string; argltemValue: string) : boolean

Parameters
argltemName
Valid field name on the current form.

argltemValue
Value to append.

Return Value
True if the method succeeded; false otherwise.

Description

AppenditemValue adds the value supplied in argltemValue to the current values in
argltemName.

The value must be of type Text (convert if necessary). Existing content in the field is not
overwritten by this method.

AppenditemValue is often used by multi-value fields. In these cases remember to delimit
the values with a delimiter character (default is ";" - see explanation for property
ListDelim).

Example

The following example selects a document and sets the field 'Number' followed by an
append to the same field.

ERP2LN.Form := 'CustTable';
ERP2LN.View := 'CustTable';
ERP2LN.SearchView ('60000'); // Lookup customer

// Large field content (resulting in one value)
ERP2LN.ItemValue ('Comments', 'Start of long text....'); // Set initial value
ERP2LN.AppendItemValue ('Comments', 'Next block of text..'); // append value

// Multivalue (resulting in 3 values)

ERP2LN.ItemValue ('Categories','catl'); // Set initial value
ERP2LN.AppendItemValue ('Categories', ';cat2;cat3"'); // append multiple values
Errors

1 - Field is not defined on current form.

2 - No form selected.

3 - No active document or no fields on form found.
99 - General error - for more details see the error log.

33

Symtax
function AppendTextList(argFieldName: string; argFieldValue: string) : boolean

Parameters

argFieldName

Valid field name on the current form.
argFieldVvalue

Value to append.

Return Value
True if the method succeeded; false otherwise.

Description

This method appends the value supplied in argFieldName to the current values in the
multi-value field supplied in argFieldName.

The value must be of type Text (convert if necessary). Existing content in the field is not
overwritten by this method.

The difference between AppendFieldValue and AppendTextList is, that AppendTextList
always adds a new value in a multi-value field.

Existing value are never overwritten by AppendTextList.

Example

The following example selects a document and sets the field 'Number' followed by an
append to the same field.

ERP2LN.DocId := 'ODFF'; // Select a document
ERP2LN.ItemValue ('Number', 'Value 1');
ERP2LN.AppendTextList ('Number', 'New multi-value');

Errors

1 - Field is not defined on current form.

2 - No form selected.

4 - No active document or no fields on form found.
99 - General error - for more details see the error log.

34

Symtax
function AttachFile(argFilename: string; argAttachmentName: string) : boolean

Parameters

argFilename

Full path to the file to attach.
argAttachmentName

Attachment name to use on the Nots document.

If an empty value is parsed the attachment name will be generated from the filename
(without the path).

Return Value
True if the method succeeded; false otherwise.

Description
Attaches the file specified in argFilename to the current document

If argAttachmentName is set, it will be used to name the attachment, otherwise the
argFilename without path is used to name the attachment.

Note: Attachment is not made to a specific rich-text field, only to the actual document).

Example

The following example attaches a file to the active document.
ERP2LN.AttachFile ('c:\temp\import.doc', 'Report.doc');

Errors

2 - No form selected.

3 - No active document.

98 - argFilename cannot be read.

99 - General error - for more details see the error log.

35

ClearQueryFields

Symtax
procedure ClearQueryFields()

Description
Clears the list with fields to be included in result set in next call to Query.

36

Symtax
function Commit() : string

Return Value
On succes a 8 digit hexadecimal Docld on the commited Notes Document.

Description
Commits any changes to the currently selected document in Lotus Notes.

Data is not saved in Lotus Notes until this method has been called.

Beware that formulas on fields and form is not executed. If this is necessary call
CommitWithForm instead.

Example
The following example updates a few items and commits the changes.
ERP2LN.DocId := 'ODFE';
ERP2LN.SetFieldValue ('Name', 'Sheet');
ERP2LN.SetFieldValue ('Responsible', 'HKR');
strDocId := ERP2LN.Commit () ;

IF ERP2LN.Error THEN ERROR('Failed to commit changes!');

Errors

1 - No form selected.
2 - No data to save.
99 - General error - for more details see the error log.

37

Symtax
function CommitWithForm() : string

Return Value
On succes a 8 digit hexadecimal Docld on the commited Notes Document.

Descrintion

This method works as Commit but with CommitWithForm all formulas on fields and the
form will be executed. This method is used, if there are fields of type 'computed' on the
form.

CommitWithForm can be considerably slower than Commit.

Example
The following example updates a few items and commits the changes.

ERP2LN.DocId := 'ODFE';

ERP2LN.SetFieldValue ('Name', 'Sheet');
ERP2LN.SetFieldValue ('Responsible', 'HKR');

strDocId := ERP2LN.CommitWithForm() ;

IF ERP2LN.Error THEN ERROR('Failed to commit changes!');

Errors

1 - No form selected.
2 - No data to save.
99 - General error - for more details see the error log.

38

Symtax
function ComputeWithForm() : boolean

Return Value
True if the method succeeded; false otherwise.

Description
Computes formulas on the open document.

Example
The following example shows how to compute the formulas on a document.

ERP2LN.DocId := 'OFDD'; // Get a document
ERP2LN.FieldvValue ('Balance', '1000"'");

IF NOT ERP2LN.ComputeWithForm() THEN ERROR('Failed to compute with form!');

MESSAGE (ERP2LN.FieldValue ('BalanceWithVAT')) ;
ERP2LN.Commit () ;

Errors

2 - No active document.
98 - Failed to compute the formulas.
99 - General error - for more details see the error log.

39

Syntax
function CreateLinkFile(argFilename: string) : boolean

Parameters
argFilename

Filename on file to be created with Lotus Notes link-information (must have the extension
"url”).

Return Value
True if the method succeeded; false otherwise.

Description
Creates a link-file with filename argFilename.
The file contains link-information on the current selected document in Lotus Notes.

By double-clicking this file in Windows, the Lotus Notes client is launched and the
document is opened.

Example
The following example shows how to save a link to a Lotus Notes document.

ERP2LN.DocId := 'ODFF'; // Select a document
ERP2LN.CreateLinkFile ('c:\temp\DocumentLink.url") ;

Errors

1 - No active document.

2 - Parameter argFilename must be a valid filename.
3 - Error writing the file to disk.

99 - General error - for more details see the error log.

40

Symtax
function CreateNew(argCommit: boolean) : string

Parameters
argCommit
If true the newly created document will be commited.

Return Value

If argCommit is true, an 8 digit hexadecimal Docld will be returned; otherwise an empty
string is returned.

Description
Creates a new empty document.

Fill in values by SetFieldValue and save the document by calling Commit.

The document is created with the current form (property Form). If the form type in Notes is
a "response-to-response document”, the new form will be created as a Response
document to the current document.
Similarly, a "Response document" will be created as a Response document to the main
document.

If argCommit is true, the document will initially be commited and accessable to other
processes. If argCommit is false it will first be availble to other processes when the
method Commit has been called.

Example
The following example creates a new documents
ERP2LN.CreateNew (FALSE) ;

ERP2LN.SetFieldValue ('Number', '125'");
ERP2LN.Commit () ;

krrors

2 - No form selected.
99 - General error - for more details see the error log.

41

Symtax
procedure DeleteCurrentDocument()

Description
Delete the active document.

Example

The following example locates a document by Docld and deletes it.
ERP2LN.Form := 'Department';
ERP2LN.DocId := 'ODFF';

ERP2LN.DeleteCurrentDocument () ;

Errors

1 - No active document.
2 - No form selected.
99 - General error - for more details see the error log.

42

DeleteTempFiie

Symtax
procedure DeleteTempFile()

Description
Deletes temporary files used in connection with a call to Query.

43

Symtax
function DetachFile(argFilename: string; argAttachmentName: string) : boolean

Parameters

argFilename

File to detach attachment to.

argAttachmentName

Name of attachment to detach (if blank the argFilename is used as attachment name).

Return Value
True if the method succeeded; false otherwise.

Description
Detaches argAttachmentName to the file specified in argFilename.

If argAttachmentName is empty the filename part of argFilename is used to locate the
attachment.

Example
The following example attaches af document and immediately detaches it.
ERP2LN.AttachFile ('c:\temp\report.doc', 'DayReport.doc');

ERP2LN.DetachFile ('c:\temp\DayReport.doc', ''); // Assume the attachment name is
'DayReport.doc’

Errors

1 - Attachment not found on current document

2 - No form selected.

3 - No active document.

98 - No attachment name supplied.

99 - General error - for more details see the error log.

44

Symtax
property Docld : string (read/write)

Return Value
The currently selected document's id.

Description
Get/set the current document by document id.

The resulting comma delimited file from a call to Query contains Doclds in the first
column.

Errors

1 - Wrong Docld (e.g. invalid ID).

2 - No form selected.

3 - Document not found.

4 - Form name missing on found document.

99 - General error - for more details see the error log.

45

Symtax
property DoclLink : string (read)

Return Value
Notes link

Descrintion

Get a notes-link to the current selected document in Lotus
This link is unique across databases, servers and replicas.

The link has the following format:

'notes://<server>/<database_replicaid>/<view_unid>/<document unid>'

Notes.

Example
The following example shows how to get the a doc link to the active document.

ERP2LN.DocId := 'ODFF'; // Select a document
strDocLink := ERP2LN.DocLink;

Errors
99 - General error - for more details see the error log.

46

Symtax
property DocumentLastModified : string (read)

Return Value
A date/time value in the format: dd-mm-yyyy hh:nn:ss.

Descrintion

Returns the last modified timestamp for the active document.

Errors
99 - General error - for more details see the error log.

47

Symtax
property Error : boolean (read)

Return Value
True if the last method succeeded; false otherwise.

Description
Status of last executed function in ERP2LN.

Use ErrorCode and ErrorText to get more details related to the error

Example
The following example shows some simple error handling.

strDocId := ERP2LN.Commit () ;
IF ERP2LN.Error THEN
BEGIN
ERROR ('Failed to commit changes!\ErrorCode: ' + FORMAT (ERP2LN.ErrorCode)
+ ERP2LN.ErrorText) ;
END

+ '\Message:

48

Symtax
property ErrorCode : integer (read)

Return Value
The last error code; O if no error has occured.

Descrintion

Last error code produced by the last executed function in ERP2LN.

Example
The following example shows how to handle an error.
strValue := ERP2LN.GetItemValue ('Name', 'John Doe');
IF ERP2LN.Error THEN
BEGIN
ERROR (ERP2LN.ErrorText + ' (' + FORMAT (ERP2LN.ErrorCode) + ')');
END;

49

Errorfext

Symtax
property ErrorText : string (read)

Return Value
The last error; empty if no error has occured.

Descrintion

Last error produced by the last executed function in ERP2LN.

Example
The following example shows how to handle an error.
strValue := ERP2LN.GetItemValue ('Name', 'John Doe');
IF ERP2LN.Error THEN
BEGIN
ERROR (ERP2LN.ErrorText + ' (' + FORMAT (ERP2LN.ErrorCode) +
END;

")

')

50

Symtax
property Form : string (read/write)

Return Value
The active form name

Description
Get/set the active form.

Specification of form to be used for operations in Notes - e.g. data-validation. It is also
possible to use form aliases.

Example
The following example...

Errors

1 - Form not found.
9 - There is no connection to the server/database (use OpenServer and Logon).
99 - General error - for more details see the error log.

51

Symtax
property FoundDocs : integer (read)

Return Value
Number of documents found in last search (Query)

Description
Returns the number of documents found at last call to Query.

Example
The following example shows a simple query followed by a printout of found documents.

ERP2LN.Query ('@A11l");
MESSAGE ('Found documents: ' + Int2Str (ERP2LN.FoundDocs)) ;

Errors
-99 - General error - for more details see the error log.

52

Symtax
function GetFieldValue(argFieldName: string; var argValue: string) : integer

Parameters
argFieldName
Field to get value from.

argValue
Value will be returned in this parameter.

Return Value
Length of the returned value.

Description

Query for field value on the current document. The document must be selected before the
query.
If the argFieldName does not exist an error occurs

Example
The following example returnes a value from the current document.
intLength := ERP2LN.GetFieldValue ('Name', strName) ;

IF ERP2LN.Error THEN ERROR('Error');
MESSAGE ('Name: ' + strName);

Errors
99 - General error - for more details see the error log.

53

Symtax
function GetltemValue(argltemName: string; var argValue: string) : integer

Parameters
argltemName
Item to get value from.

argValue
Value will be returned in this parameter.

Return Value
Length of the returned value.

Description

Query for item value on the current document. The document must be selected before the
query.
If the argltemName does not exist an empty string is returned in argValue

Example
The following example returnes a value from the current document.

intLength := ERP2LN.GetItemValue ('Name', strName);

IF ERP2LN.Error THEN ERROR('Error');
MESSAGE ('Name: ' + strName);

Errors
99 - General error - for more details see the error log.

54

Symtax
function GetUnique(argltemName: string: argltemValue: string) : string

Parameters
argltemName
Item name (must be present on the active form)

argltemValue
Value to search for in argltemName.

Return Value
The document id (Docld) on the found document. Otherwise empty.

Description

This method is used for finding a document in Notes that contains argltemValue in item
argltemName.

The method returns an error if the query finds more documents.

If there is a possibility that the query will result in the finding of more documents, the
method Query should be used instead.

Remember that Notes item names are case-sensitive.

Example
The following example...

strDocId := ERP2LN.GetUnique ('Name', 'John Doe');
IF Strlen(strDocId) > 0 THEN
BEGIN
MESSAGE ('Found document') ;
END;

krrors

0 - Document not found.

1 - argltemName is not defined on the active Notes form.
2 - Form not selected.

3 - More than 1 document found.

99 - General error - for more details see the error log.

55

Symtax
function ImportFile(argFieldName: string; argFilename: string) : boolean

Parameters
argFieldName
Name of the rich-text field.

argFilename
Filename to import.

Return Value
True if the method succeeded; false otherwise.

Description
Imports argFilename into the to the rich-text field argFieldName.

It is used for embedding graphics and rich-text. Can be combined with SetRichFieldValue
for "ordinary" body text.

The specified file is added to the existing contents in the rich-text field.

Note that some of the graphics formats supported have some variants that are not all
supported by the integration kit. It is recommended to test the compatibility of existing
graphics programs by sending a mail to one's own address.

Example
The following example demonstrates how to import an image to a rich-text field.
ERP2LN.Form := 'CustTable';
ERP2LN.View := 'CustTable';
ERP2LN.SearchView ('62000'); // Lookup customer
ERP2LN. ImportFile ('CustomerLogo', 'c:\temp\logo.jpg'):

ERP2LN.Commit () ;

Errors

1 - argFieldName is not defined on the Notes form.

2 - Form not selected.

3 - argFieldName is not a rich text field.

4 - No active document.

98 - File argFilename not found or cannot be read.
99 - General error - for more details see the error log.

56

Symtax
function Init(argSerial: string; argOptions: integer) : string

Parameters
argSerial
The serial number obtained from the calling system (e.g. Microsoft NAV).

Depending on the calling system, the following information must be prepended to the
serial number:

Calling System Prepended string
Attain@ Microsoft Attain
Axapta@ Microsoft Axapta
Service@ Other systems
argOptions
The following options are available:
0 No options selected
99 Full debug mode
Return Value

True if the method succeeded; false otherwise.

Descrintion

Initializes the sub-systems needed by INTOGRATE to communicate with the Lotus Notes
client.

This method must always be called before any other methods are used.

Example
The following example open's a connection to a Domino server and logs on to a database.

CREATE (ERP2LN) ;
IF NOT ERP2LN.Init ('Attain@' + SERIALNUMBER, 0) THEN
BEGIN

ERROR ('NotesInit error %1', ERP2LN.ErrorCode) ;
END;
ERP2LN.OpenServer ('dominol/acme"') ;
ERP2LN.Logon ('department.nsf') ;

Errors
99 - General error - for more details see the error log.

57

Symtax
property ItemValue(argltemName: string) : string (read/write)

Return Value
The value in argltemName

Description
Get/sets the value of argltemName.

argltemName do not have to exists on the selected form.

It is possible to specify that the field is to be saved with a different type in Notes (since the
field is not necessarily defined in the form).
This is done by prefixing argltemName with the data type.

Available data types are:

Data type Prefix

Text HTEXT#

Number #NUMBER#

Date and time #DATETIME#
Date only #DATEONLY#
Time only #TIMEONLY#
Text list H#TEXT_LIST#
Number list #NUMBER_LIST#
Rich text #RICHTEXT#

If no prefix is used the data type specified by the form will be used; otherwise it will be
treated as text

Date-values must always have the format "dd-mm-yy" or "dd-mm-yyyy" - using dash as a
delimiter.

The Get-method is unsupported in Microsoft NAV. Use GetltemValue instead.

Errors
99 - General error - for more details see the error log.

58

Symtax
property KeepUnread : boolean (write)

Description

Normally, the integration kit will overwrite existing data regardless of any differences
between the new field value and the old one. This means that the document will be
marked as unread and LAST_MODIFIED will be changed. In certain situations, however,
data may only be overwritten if the field values do differ. SetKeepUnread handles this.
If it is activated the field value will be read before each write and writing in Notes will only
take place if the new field value is different from the old one.

Errors
99 - General error - for more details see the error log.

59

Symtax
property KeyDelimiter : string (write)

Description
Set the character to be used as search-field separator.
Semi-colon (;) is the default separator in connection with the transfer of multiple search

values to SearchView. If this cannot be used, an alternative separator can be set by using
this property.

Example
The following example show how to change the default key delimiter.
strQuery := Contact.Name + '@' + Contact.Address;

ERP2LN.KeyDelimiter := '@Q';
ERP2LN.SearchView (strQuery) ;

Errors
99 - General error - for more details see the error log.

60

Symtax
property ListDelim : string (write)

Description
Set the multi-value delimiter character.

To transfer values (e.g. by SetFieldValue) to a multi-value field each value can be
separated by a delimiting character.

The default delimiter in the integration kit is ";'.

This is usefull to change when transferring values that contains semi-colon.

Example
The following example shows how to select a different delimiter.

ERP2LN.ListDelim := '@';

ERP2LN.SetFieldValue ('ContactNotes', 'This is first; with semi colon@This is the second
note') ;

Errors
99 - General error - for more details see the error log.

61

Symtax
function Logon(argDatabase: string) : boolean

Parameters
argDatabase
Path to database, relative to Lotus-data directory.

Return Value
True if the method succeeded; false otherwise.

Descrintion

Opens a session with Lotus Notes upon specification of a database name. On login Lotus
Notes checks the credentials of the user.

The current set-up of the workstation (user ID, location etc.) is used when creating the
connection.

When contact to a Notes server is established for the first time, the user's password is
requested - unless the Notes client has been set up to share password with other
programs.

Example
The following example demonstrates how to logon on to a Domino server.

CREATE (ERP2LN) ;
IF NOT ERP2LN.Init ('Attain@' + SERIALNUMBER, 0) THEN
BEGIN

ERROR ('NotesInit error %1', ERP2LN.ErrorCode);
END;

ERP2LN.OpenServer ('dominol/acme"') ;
IF NOT ERP2LN.Logon ('department.nsf') THEN ERROR('Error login on!'");

Errors

9 - Server is not set. Call OpenServer first.
99 - General error - for more details see the error log.

62

Symtax
property MailAppendSignature : boolean (write)

Description

Set if the currently active mail-signature should be appended to e-mails being send by
INTOGRATE.

If you plan to import files directly into the body of the mail, then in most cases you should
disable the signature.

63

Symtax
function MailAttachFile(argFilename: string; argAttachmentName: string) : boolean

Parameters

argFilename

Full path to the file to attach.
argAttachmentName

Attachment name to use on the Nots document.

If an empty value is parsed the attachment name will be generated from the filename
(without the path).

Return Value
True if the method succeeded; false otherwise.

Description
Attaches the file specified in argFilename to the current mail

If argAttachmentName is set, it will be used to name the attachment, otherwise the
argFilename without path is used to name the attachment.

Note: Attachment is not made to a specific rich-text field, only to the actual document).

Example
The following example attaches a file to the active document.

ERP2LN.MailSendTo ('john@acme.com') ;

ERP2LN.MailSubject := 'January Newsletter';
ERP2LN.MailAttachFile ('c:\temp\import.doc', 'Report.doc');
ERP2LN.MailSend('");

Errors

2 - No form selected.

3 - No active document.

98 - argFilename cannot be read.

99 - General error - for more details see the error log.

64

Symtax
procedure MailBCC(argBCC: string)

Parameters
argBCC

Comma-separated list of e-mail addresses (e.g. "john@acme.com”
"john@acme.com,jane@acme.com").

or

Description
Add an e-mail address to the BCC-field on the active e-mail.

This method can be called more than once to add several e-mail addresses.

65

Symtax
function MailBody(argBody: string) : boolean

Parameters
argBody
Text to append to the body content.

Return Value
True if the method succeeded; false otherwise.

Description
Adds text to mail in the body field. By repeated calls of this method, more lines are built
up.

This method must be used when importing other file formats with the method Mail-
BodyFile.

It corresponds to MailBodyText with regard to functions but is slightly slower as it sets the
value directly on the mail document.

Example
The following example sends an email with two text-lines in the body.

ERP2LN.MailSendTo ('john@acme.com') ;
ERP2LN.MailSubject ('January Newsletter');
ERP2LN.MailBody ('First line.');
ERP2LN.MailBody ('Second line.');
ERP2LN.MailSend('");

Errors

1 - Error opening mail-server and/or mail-database.
99 - General error - for more details see the error log.

66

MaliBodyText

Symtax
procedure MailBodyText(argBody: string)

Parameters
argBody
Text to append to the body content.

Description
Add text to the body of an e-mail.

It is similar to MailSetBody but it is faster since it does not require a mail document to be
created (backend).

Using this method excludes the use of MailSetBody and MailSetBodyFile.

Example
The following example sends an email with to text-lines in the body.

ERP2LN.MailSendTo ('john@acme.com') ;
ERP2LN.MailSetSubject ('January Newsletter');
ERP2LN.MailSetBodyText ('First line.');
ERP2LN.MailSetBodyText ('Second line.');
ERP2LN.MailSend('"');

Errors
99 - General error - for more details see the error log.

67

Symtax
procedure MailCC(argCC: string)

Parameters
argCC

Comma-separated list of e-mail addresses (e.g. "john@acme.com"™ or
"john@acme.com,jane@acme.com").

Description
Add an e-mail address to the CC-field on the active e-mail.

This method can be called more than once to add several e-mail addresses.

68

Symtax
function MailCompose(argForceBackend: boolean) : string

Parameters
argForceBackend
Create backend document.

Return Value
True if the method succeeded; false otherwise.

Descrintion

Opens a new mail in the Lotus Notes mail client with the data set from the other mail
methods.

If argForceBackend is TRUE, a new document will be created in Lotus Notes. This
document can then be modified with the methods in the integration Kkit.
Otherwise only a 'front-end' mail will be created.

If argForceBackend is FALSE, no back-end document is created.

If one or more attachments have been created on the current mail, a back-end document
is always created (to store the attachments).

This method returns instantly - there will be no check whether the mail is sent or not. If a
backend document has been created the UNID is returned.

Example

The following example opens a new mail in Lotus Notes with prefilled 'To' and 'Subject'
fields.

ERP2LN.MailSendTo ('john@acme.com') ;
ERP2LN.NotesMailSetSubject ('Mail subject...');
ERP2LN.MailCompose (false) ;

Errors
99 - General error - for more details see the error log.

69

Symtax
function MailCreateLinkFile(argFilename: string) : boolean

Parameters
argFilename

Filename on file to be created with Lotus Notes link-information (must have the extension
"url”).

Return Value
True if the method succeeded; false otherwise.

Description
Creates a link-file with filename argFilename.

Works as CreateLinkFile, although with this method the file contains a link to a sent mail.
The method is typically called right after MailCompose or MailSend.

Example
The following example shows how to save a link to a Lotus Notes document.

ERP2LN.DocId := 'ODFF'; // Select a document
ERP2LN.CreateLinkFile ('c:\temp\DocumentLink.url") ;

Errors

1 - No active document.

2 - Parameter argFilename must be a valid filename.
3 - Error writing the file to disk.

99 - General error - for more details see the error log.

70

Symtax
function MailGetLink() : string

Return Value
Notes link

Descrintion

This method returns a notes-link to the current prepared or sent mail in Lotus Notes.
This link is unique across databases, servers and replicas.

The link has the following format:

'notes://<server>/<database_replicaid>/<view_unid>/<document unid>

Errors
99 - General error - for more details see the error log.

71

Symtax
function MaillmportBodyFile(argFilename: string)

Parameters
argFilename
File to import into the body content.

Return Value
True if the method succeeded; false otherwise.

Description
Imports argFilename into the to the body field.

It is used for embedding graphics and rich-text and can be combined with
NotesMailSetBody to create the body content.

Note that some of the graphics formats supported have some variants that are not all
supported by the integration kit. It is recommended to test the compatibility of existing
graphics programs by sending a mail to one's own address.

Example
The following example sends a mail with a body content created from a file.

ERP2LN.MailSendTo ('john@acme.com') ;
ERP2LN.NotesMailSetSubject ('January Newsletter');
ERP2LN.NotesMailSetBody ('Starting content.');
ERP2LN.NotesMailSetBodyFile ('c:\temp\Chart.jpg"') ;
ERP2LN.MailSend('");

Errors
99 - General error - for more details see the error log.

72

Symtax
function MailSend(argBodyFilename: string) : boolean

Parameters
argBodyFilename
File to import into the body area of the mail.

The possible formats depends on your Lotus Notes version (usually the formats HTML,
Text, Microsoft RTF are accepted).

Return Value
True if the method succeeded; false otherwise.

Description
Send the active mail (prepared by calling MailSendTo, NotesMailSetSubject, etc.).

If argBodyFilename is supplied, this file will be imported to the body content of the mail.
This works the same way as when you import a file into a mail in your Lotus Notes client.

Example
The following example sends an email with 'newsletter.html' as a body.
ERP2LN.MailSendTo ('john@acme.com') ;

ERP2LN.MailSubject ('January Newsletter');
ERP2LN.MailSend ('c:\temp\newsletter.html');

Errors

1 - No recipients specified. Make sure to call MailSendTo.
98 - Unable to import argBodyFilename (read error or file not found).
99 - General error - for more details see the error log.

73

MaliSendTo

Symtax
procedure MailSendTo(argSendTo: string)

Parameters
argSendTo

Comma-separated list of e-mail addresses (e.g. "john@acme.com"™ or
"john@acme.com,jane@acme.com").

Description
Add an e-mail address to the To-field on the active e-mail.

This method can be called more than once to add several e-mail addresses.

74

Symtax
procedure MailSubject(argSubject: string) : string

Parameters
argSubject
Text for the subject.

Description
Set the subject of the current mail.

Errors

99 - General error - for more details see the error log.

75

Symtax
function MoveFirst() : string

Return Value
Notes Document ID of the found document.

Descrintion

Finds and selects the first document in the last query result (Query). Returns the
document's Docld.

Example
The following example shows how to iterate a query result.

strDocId := ERP2LN.MoveFirst () ;

WHILE (StrLen (strDocId)) > 0 DO

BEGIN
ERP2LN.GetItemValue ('Name', strName) ;
MESSAGE (strName) ;

strDocId := ERP2LN.MoveNext () ;
END;

Errors
99 - General error - for more details see the error log.

76

Symtax
function Movelast() : string

Return Value
Notes Document ID of the found document.

Descrintion

Finds and selects the last document in the last query result (Query). Returns the
document's Docld.

Example
The following example shows how to iterate a query result in reverse order.

strDocId := ERP2LN.MoveLast () ;

WHILE (StrLen (strDocId)) > 0 DO

BEGIN
ERP2LN.GetItemValue ('Name', strName);
MESSAGE (strName) ;

strDocId := ERP2LN.MovePrev () ;
END;

Errors
99 - General error - for more details see the error log.

77

Symtax
function Movelast() : string

Return Value
Notes Document ID of the found document.

Descrintion

Finds and selects the next document in the last query result (Query). Returns the
document's Docld.

Example
The following example shows how to iterate a query result.

strDocId := ERP2LN.MoveFirst () ;

WHILE (StrLen (strDocId)) > 0 DO

BEGIN
ERP2LN.GetItemValue ('Name', strName) ;
MESSAGE (strName) ;

strDocId := ERP2LN.MoveNext () ;
END;

Errors
99 - General error - for more details see the error log.

78

Symtax
function MovePrev() : string

Return Value
Notes Document ID of the found document.

Descrintion

Finds and selects the previous document in the last query result (Query). Returns the
document's Docld.

Example
The following example shows how to iterate a query result in reverse order.

strDocId := ERP2LN.MoveLast () ;

WHILE (StrLen (strDocId)) > 0 DO

BEGIN
ERP2LN.GetItemValue ('Name', strName);
MESSAGE (strName) ;

strDocId := ERP2LN.MovePrev () ;
END;

Errors
99 - General error - for more details see the error log.

79

Symtax
function OpenServer(argServer: string): boolean

Parameters
argServer
The name of the server to connect to.

To open a local database use "Local" as server name.

Return Value
True if the method succeeded; false otherwise.

Description
Prepare the server to connect to with Logon

Example

The following example open's a connection to a Domino server and logs on to a database.

ERP2LN.OpenServer ('dominol/acme"') ;
ERP2LN.Logon ('department.nsf') ;

Errors

1 - Integration kit is not initialized - call method Init.
99 - General error - for more details see the error log.

80

Symtax
function Query(argQuery: string) : integer

Parameters

argQuery

A Notes SELECT command, to be used for selecting Notes documents. If a blank (")
command is specified, all documents in the current selected view is selected. The word
SELECT is optional.

Return Value
Number of found documents.

Description

This method is used for general queries for Notes documents. Please see your Lotus
Notes documentation for details on a query statement.

If argQuery is empty, all documents in the database are returned.
Notes formulas can be used (e.g. "SELECT @AII" or just "@AIl").

If a temporary file has been assigned, data is also stored in this file as comma-separated
values. Remember to delete the comma-delimited file after use.

Data is also available as an in-memory result-set.

Use MoveFirst, MoveNext, MovePrev and MoveLast to navigate through this result set or
read the comma file.

Example
The following example shows a simple query to the active database.

ERP2LN.Query ('@contains (Number;"1") ") ;

Errors

1 - Could not write temporary file to disk.
9 - No form selected.
99 - General error - for more details see the error log.

81

QueryRichTextField

Symtax
function QueryRichTextField(argFieldName: string) : string

Parameters
argFieldName
Field to get value from (must be of type rich-text)

Return Value
The content of the field (truncated if very large)

Description
Query the value from argFieldName.

Remember that the field name specification must be exact (Notes is case sensitive)

If a temporary file has been assigned (property TempFile) this will contain the text-version
of argFieldValue on function return. Very usefull when reading large values from rich-text
fields.

Example
The following example reads a rich text item from the current document.

ERP2LN.GetUnique ('Name', 'John Doe');
strDescription := ERP2LN.QueryRichTextField('Description');

Errors

1 - Field not defined on active form.

2 - No form selected.

3 - No active document.

99 - General error - for more details see the error log.

82

Symtax
function QueryView() : boolean

Return Value
True if the method succeeded; false otherwise.

Descrintion

This method corresponds to the Query method, but with this method no SELECT string is
used.

Instead all documents in current view are returned in a result-set and in a comma
separated file (if a temporary file has been assigned).

Example
The following example queries the view 'Contacts'.

ERP2LN.View := 'Contacts';
ERP2LN.QueryView () ;

Errors

0 - No data found.

1 - Error creating or writing to comma separated file.
9 - View not selected.

99 - General error - for more details see the error log.

Symtax
function Removeltem(argltemName: string) : boolean

Parameters
argltemName
Name of item to delete.

Return Value
True if the method succeeded; false otherwise.

Description
Remove (deletes) argltemName from the active document.

The item does not have to exist as a field on the current form.

If the item is a multi-value item all values will be deleted.

Example
The following example removes the item 'MiddleName' from the active document.

ERP2LN.Removeltem('MiddleName') ;

Errors

2 - No active document.
99 - General error - for more details see the error log.

84

Symtax
function SearchFirst : string

Return Value
The Notes Document ID of the found document.

Descrintion

Returns the first document of the current view. Using Query by View makes searching
much faster than searching by Query.

The View must be designed in such a way that the first sorted column MUST be of type
'text' and no sorted columns can be defined as a "constants".

Example
The following example iterates all documents in the Contacts view.

ERP2LN.View := 'Contacts';

strDocId := ERP2LN.SearchFirst();

WHILE (StrLen (strDocId)) > 0 DO

BEGIN
ERP2LN.GetItemValue ('Name', strName);
MESSAGE (strName) ;

strDocId := ERP2LN.SearchNext () ;
END;

Errors

0 - No data found.

1 - No view selected.

2 - No form selected.

99 - General error - for more details see the error log.

Symtax
function SearchNext : string

Return Value
The Notes Document ID of the found document.

Descrintion

Returns the next document of the current view. Using Query by View makes searching
much faster than searching by Query.

To be used typically after calls to SearchFirst or SearchView.

The View must be designed in such a way that the first column is sorted and the first
column MUST be of the type 'text' and must not contain columns defined as a "constant".

Remark: if this method is used after a call to SearchView only documents matching the
SearchView can be traversed.

Example

The following example iterates all documents in the Contacts view.
ERP2LN.View := 'Contacts';
strDocId := ERP2LN.SearchView ('John Doe');

WHILE (StrLen (strDocId)) > 0 DO

BEGIN
ERP2LN.GetItemValue ('Name', strName) ;
MESSAGE (strName) ;

strDocId := ERP2LN.SearchNext () ;
END;

Errors

0 - No data found.

1 - No view selected.

9 - No form selected.

99 - General error - for more details see the error log.

86

Symtax
function SearchView(argKeys: string) : string

Return Value
The first Notes Document ID that matches the conditions.

Description
Returns the first document in the current view which matches the search value.
Using SearchView makes searching much faster than searching by Query (full-text).

Should always be used in connection with lookups in views with large amounts of
documents.

The view must be designed in such a way that the first column is sorted and the first
column MUST be of the type 'text' and must not contain columns defined as a "constant”.

If there is more than one search key, the search keys must be separated by a separator
(default is semi-colon (;")). Furthermore, columns in views in Notes must match the
parameter order.

Example
The following example iterates all documents with a certain key in the Contacts view.

ERP2LN.View := 'Contacts';

strDocId := ERP2LN.SearchFirst();

WHILE (StrLen (strDocId)) > 0 DO

BEGIN
ERP2LN.GetItemValue ('Name', strName) ;
MESSAGE (strName) ;

strDocId := ERP2LN.SearchNext () ;
END;

Errors
99 - General error - for more details see the error log.

87

TembFile

Symtax
property TempkFile : string (read/write)

Return Value
True if the method succeeded; false otherwise.

Description
Get/set the temporary filename used by Query

Errors
99 - General error - for more details see the error log.

88

TruncateReturnString

Symtax
procedure TruncateReturnString(argMaxLength: integer)

Parameters
argMaxLength
The maximum number characters to return from properties and functions.

Description

When returning values from INTOGRATE there can be situations where the calling
system do no support large return strings.

If this is the case this method can limit the size of returned strings.
In NAV the limit is 1024 characters.

89

Symtax
property UNID : string

Return Value
The universal id of the active document.

Description
Get/set the universal id.

When setting the UNID, the document is automatically located in the current active
database.

The Universal Document Id is a 32-character string which is unique across databases.

Example

The following example locates the first record in the Contact table and selects a document
in Lotus Notes.

ERP2LN.Form := 'ContactPerson';
IF Contact.FIND('-"') THEN
BEGIN
ERP2LN.UNID := Contact.LotusNotesUNID;
IF NOT ERP2LN.Error THEN
BEGIN
MESSAGE ('Found document in Lotus Notes: ' + ERP2LN.ItemValue ('Subject'));
END;
END;
Errors

2 - Form not set.
3 - Document with specified UNID not found.
99 - General error - for more details see the error log.

90

Symtax
property Username: string (read)

Return Value
The Lotus Notes user name for the current user.

Descrintion

Returns a fully qualified Lotus Notes user name, e.g.: "CN=John Smith/O=Intoint".

Example
The following example shows how to get the active username from Lotus Notes.

strUsername := ERP2LN.Username;
MESSAGE ('Logged in user: ' + strUsername);

Errors
99 - General error - for more details see the error log.

91

Symtax
property View : string (write)

Return Value
True if the method succeeded; false otherwise.

Description
Set the current view

Example
The following example shows how to search a view for a given document.

ERP2LN.View := 'Contacts';
strDocId := ERP2LN.SearchView ('John Doe');
IF StrLen(strDocId) > 0 THEN MESSAGE ('Found');

Errors

1 - View not found.
9 - Server is not set. Call OpenServer first.
99 - General error - for more details see the error log.

92

